Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937927

RESUMO

Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are pivotal regulators of extracellular matrix (ECM) composition and could, due to their dynamic activity, function as prognostic tools for fibrosis and cardiac function in left ventricular diastolic dysfunction (LVDD) and heart failure with preserved ejection fraction (HFpEF). We conducted a systematic review on experimental animal models of LVDD and HFpEF published in MEDLINE or Embase. Twenty-three studies were included with a total of 36 comparisons that reported established LVDD, quantification of cardiac fibrosis and cardiac MMP or TIMP expression or activity. LVDD/HFpEF models were divided based on underlying pathology: hemodynamic overload (17 comparisons), metabolic alteration (16 comparisons) or ageing (3 comparisons). Meta-analysis showed that echocardiographic parameters were not consistently altered in LVDD/HFpEF with invasive hemodynamic measurements better representing LVDD. Increased myocardial fibrotic area indicated comparable characteristics between hemodynamic and metabolic models. Regarding MMPs and TIMPs; MMP2 and MMP9 activity and protein and TIMP1 protein levels were mainly enhanced in hemodynamic models. In most cases only mRNA was assessed and there were no correlations between cardiac tissue and plasma levels. Female gender, a known risk factor for LVDD and HFpEF, was underrepresented. Novel studies should detail relevant model characteristics and focus on MMP and TIMP protein expression and activity to identify predictive circulating markers in cardiac ECM remodeling.


Assuntos
Matriz Extracelular/metabolismo , Insuficiência Cardíaca/metabolismo , Metaloproteinases da Matriz/metabolismo , Inibidores Teciduais de Metaloproteinases/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Remodelação Ventricular/fisiologia , Animais , Humanos , Função Ventricular Esquerda/fisiologia
2.
Angiogenesis ; 22(3): 411-420, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30929097

RESUMO

Lower numbers of progenitor cells (PCs) in peripheral blood (PB) have been associated with cardiovascular events in high-risk populations. Therapies aiming to increase the numbers of PCs in circulation have been developed, but clinical trials did not result in better outcomes. It is currently unknown what causes the reduction in PB PC numbers: whether it is primary depletion of the progenitor cell reserve, or a reduced mobilization of PCs from the bone marrow (BM). In this study, we examine if PB and BM PC numbers predict Amputation-Free Survival (AFS) in patients with Severe Limb Ischemia (SLI). We obtained PB and BM from 160 patients enrolled in a clinical trial investigating BM cell therapy for SLI. Samples were incubated with antibodies against CD34, KDR, CD133, CD184, CD14, CD105, CD140b, and CD31; PC populations were enumerated by flow cytometry. Higher PB CD34+ and CD133+ PC numbers were related to AFS (Both Hazard Ratio [HRevent] = 0.56, p = 0.003 and p = 0.0007, respectively). AFS was not associated with the other cell populations in PB. BM PC numbers correlated with PB PC numbers and showed similar HRs for AFS. A further subdivision based on relative BM and PB PC numbers showed that BM PC numbers, rather than mobilization, associated with AFS. Both PB and BM PC numbers are associated with AFS independently from traditional risk factor and show very similar risk profiles. Our data suggest that depletion of the progenitor cell reserve, rather than decreased PC mobilization, underlies the association between PB PC numbers and cardiovascular risk.


Assuntos
Células da Medula Óssea/patologia , Extremidades/irrigação sanguínea , Isquemia/patologia , Células-Tronco/patologia , Idoso , Amputação Cirúrgica , Contagem de Células , Feminino , Humanos , Isquemia/sangue , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Fatores de Risco
3.
Circ Res ; 114(2): 311-4, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24218170

RESUMO

RATIONALE: The impact of severe cardiovascular disease and critical limb ischemia (CLI) on the bone marrow (BM) is largely unknown. OBJECTIVE: To investigate microvascular and neuropathic changes in BM of patients with CLI. METHODS AND RESULTS: BM biopsies were obtained from patients with CLI (n=33) included in the Rejuvenating Endothelial Progenitor Cells via Transcutaneous Intra-arterial Supplementation (JUVENTAS) trial (NCT00371371) and controls (n=12). We performed immunohistochemistry and histomorphometry of the BM to assess microvascular density and to evaluate pan-neuronal and sympathetic innervation, which is involved in progenitor cell mobilization. Microvascular density was reduced significantly in CLI compared with controls (P=0.01), as was sympathetic (P=0.047) and pan-neuronal innervation (P=0.006). No differences in microvascular density and sympathetic or pan-neuronal innervation were observed between patients with CLI with and without diabetes mellitus. CONCLUSIONS: CLI is associated with BM microvascular and neuropathic changes, both in patients with and without diabetes mellitus.


Assuntos
Medula Óssea/irrigação sanguínea , Medula Óssea/inervação , Isquemia/patologia , Microvasos/patologia , Sistema Nervoso Simpático/patologia , Idoso , Biomarcadores/análise , Biópsia , Exame de Medula Óssea , Estudos de Casos e Controles , Estado Terminal , Diabetes Mellitus/patologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Microvasos/química , Pessoa de Meia-Idade , Sistema Nervoso Simpático/química
4.
Curr Rheumatol Rep ; 18(2): 12, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26943351

RESUMO

Systemic sclerosis (SSc) is a rare autoimmune connective tissue disease with a high mortality and morbidity. While progress has been made in terms of identifying high-risk patients and implementing new treatment strategies, therapeutic options remain limited. In the past few decades, various cellular therapies have emerged, which have been studied in SSc and other conditions. Here, we provide a comprehensive review of currently available cellular therapies and critically assess their merit as disease-modifying treatment for SSc. Currently, hematopoietic stem cell transplantation is the only cellular therapy that has demonstrated clinical effects on the immune system, neoangiogenesis, and fibrosis. Robust mechanistic studies as well as clinical trials are essential to move the field forward.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Escleroderma Sistêmico/terapia , Ensaios Clínicos como Assunto/métodos , Células Dendríticas/transplante , Transplante de Células-Tronco Hematopoéticas/tendências , Humanos , Transplante de Células-Tronco Mesenquimais/tendências , Linfócitos T Reguladores/transplante
5.
Mol Ther ; 22(11): 1960-70, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25174586

RESUMO

Critical limb ischemia (CLI) is often poorly treatable by conventional management and alternatives such as autologous cell therapy are increasingly investigated. Whereas previous studies showed a substantial impairment of neovascularization capacity in primary bone-marrow (BM) isolates from patients, little is known about dysfunction in patient-derived BM mesenchymal stromal cells (MSCs). In this study, we have compared CLI-MSCs to healthy controls using gene expression profiling and functional assays for differentiation, senescence and in vitro and in vivo pro-angiogenic ability. Whereas no differentially expressed genes were found and adipogenic and osteogenic differentiation did not significantly differ between groups, chondrogenic differentiation was impaired in CLI-MSCs, potentially as a consequence of increased senescence. Migration experiments showed no differences in growth factor sensitivity and secretion between CLI- and control MSCs. In a murine hind-limb ischemia model, recovery of perfusion was enhanced in MSC-treated mice compared to vehicle controls (71 ± 24% versus 44 ± 11%; P < 1 × 10(-6)). CLI-MSC- and control-MSC-treated animals showed nearly identical amounts of reperfusion (ratio CLI:Control = 0.98, 95% CI = 0.82-1.14), meeting our criteria for statistical equivalence. The neovascularization capacity of MSCs derived from CLI-patients is not compromised and equivalent to that of control MSCs, suggesting that autologous MSCs are suitable for cell therapy in CLI patients.


Assuntos
Isquemia/patologia , Isquemia/terapia , Perna (Membro)/patologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica , Animais , Diferenciação Celular , Células Cultivadas , Senescência Celular , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Voluntários Saudáveis , Humanos , Perna (Membro)/irrigação sanguínea , Camundongos
6.
Adv Healthc Mater ; 13(17): e2303888, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38451476

RESUMO

Current vascular access options require frequent interventions. In situ tissue engineering (TE) may overcome these limitations by combining the initial success of synthetic grafts with long-term advantages of autologous vessels by using biodegradable grafts that transform into autologous vascular tissue at the site of implantation. Scaffolds (6 mm-Ø) made of supramolecular polycarbonate-bisurea (PC-BU), with a polycaprolactone (PCL) anti-kinking-coil, are implanted between the carotid artery and jugular vein in goats. A subset is bio-functionalized using bisurea-modified-Stromal cell-derived factor-1α (SDF1α) derived peptides and ePTFE grafts as controls. Grafts are explanted after 1 and 3 months, and evaluated for material degradation, tissue formation, compliance, and patency. At 3 months, the scaffold is resorbed and replaced by vascular neo-tissue, including elastin, contractile markers, and endothelial lining. No dilations, ruptures, or aneurysms are observed and grafts are successfully cannulated at termination. SDF-1α-peptide-biofunctionalization does not influence outcomes. Patency is lower in TE grafts (50%) compared to controls (100% patency), predominantly caused by intimal hyperplasia. Rapid remodeling of a synthetic, biodegradable vascular scaffold into a living, compliant arteriovenous fistula is demonstrated in a large animal model. Despite lower patency compared to ePTFE, transformation into autologous and compliant living tissue with self-healing capacity may have long-term advantages.


Assuntos
Prótese Vascular , Cabras , Animais , Alicerces Teciduais/química , Implantes Absorvíveis , Fístula Arteriovenosa , Poliésteres/química , Artérias Carótidas/cirurgia , Engenharia Tecidual/métodos , Quimiocina CXCL12/farmacologia , Quimiocina CXCL12/metabolismo , Grau de Desobstrução Vascular
7.
Eur Heart J ; 33(9): 1076-84, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21831908

RESUMO

AIMS: In patients with obstructive coronary artery disease (CAD), the growth of collateral arteries, i.e. arteriogenesis, can preserve myocardial tissue perfusion and function. Monocytes modulate this process, supplying locally the necessary growth factors and degrading enzymes. Knowledge on factors involved in human arteriogenesis is scarce. Thus, the aim of the present study is to identify targets in monocytes that are critical for arteriogenesis in patients with CAD. METHODS AND RESULTS: A total of 50 patients with a chronic total coronary occlusion were dichotomized according to their collateral flow index. From each patient, RNA was isolated from unstimulated peripheral blood monocytes, monocytes stimulated by lipopolysaccharide (LPS) or interleukin (IL)-4, and from macrophages. Increased mRNA expression of galectin-2 was found in three out of four monocytic cell types of patients with a low capacity of the collateral circulation (P= 0.03 for unstimulated monocytes; P= 0.02 for LPS-stimulated monocytes; P= 0.20 for IL-4-stimulated monocytes; P= 0.02 for macrophages). Additionally, galectin-2 mRNA expression was significantly associated with the rs7291467 polymorphism in LGALS2 encoding galectin-2 in all four monocytic cell types. Patient with the rs7291467 CC genotype displayed highest galectin-2 expression, and also tended to have a lower arteriogenic response. To evaluate the effect of galectin-2 on arteriogenesis in vivo, we used a murine hindlimb model. Treatment with galectin-2 markedly impaired the perfusion restoration at Day 7. CONCLUSION: Collectively, these results identify galectin-2 as a novel inhibitor of arteriogenesis. Modulation of galectin-2 may constitute a new therapeutic strategy for the stimulation of arteriogenesis in patients with CAD.


Assuntos
Circulação Colateral/genética , Oclusão Coronária/genética , Galectina 2/metabolismo , Polimorfismo Genético/genética , Idoso , Animais , Fármacos Cardiovasculares/farmacologia , Circulação Colateral/efeitos dos fármacos , Oclusão Coronária/metabolismo , Oclusão Coronária/fisiopatologia , Feminino , Galectina 2/genética , Galectina 2/farmacologia , Membro Posterior , Humanos , Interleucina-4/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , RNA Mensageiro/metabolismo
8.
APL Bioeng ; 7(2): 026107, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37234843

RESUMO

Vascular in situ tissue engineering encompasses a single-step approach with a wide adaptive potential and true off-the-shelf availability for vascular grafts. However, a synchronized balance between breakdown of the scaffold material and neo-tissue formation is essential. Chronic kidney disease (CKD) may influence this balance, lowering the usability of these grafts for vascular access in end-stage CKD patients on dialysis. We aimed to investigate the effects of CKD on in vivo scaffold breakdown and tissue formation in grafts made of electrospun, modular, supramolecular polycarbonate with ureido-pyrimidinone moieties (PC-UPy). We implanted PC-UPy aortic interposition grafts (n = 40) in a rat 5/6th nephrectomy model that mimics systemic conditions in human CKD patients. We studied patency, mechanical stability, extracellular matrix (ECM) components, total cellularity, vascular tissue formation, and vascular calcification in CKD and healthy rats at 2, 4, 8, and 12 weeks post-implantation. Our study shows successful in vivo application of a slow-degrading small-diameter vascular graft that supports adequate in situ vascular tissue formation. Despite systemic inflammation associated with CKD, no influence of CKD on patency (Sham: 95% vs CKD: 100%), mechanical stability, ECM formation (Sirius red+, Sham 16.5% vs CKD 25.0%-p:0.83), tissue composition, and immune cell infiltration was found. We did find a limited increase in vascular calcification at 12 weeks (Sham 0.08% vs CKD 0.80%-p:0.02) in grafts implanted in CKD animals. However, this was not associated with increased stiffness in the explants. Our findings suggest that disease-specific graft design may not be necessary for use in CKD patients on dialysis.

9.
Blood ; 115(12): 2533-42, 2010 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-20032497

RESUMO

The shear stress-induced transcription factor Krüppel-like factor 2 (KLF2) confers antiinflammatory properties to endothelial cells through the inhibition of activator protein 1, presumably by interfering with mitogen-activated protein kinase (MAPK) cascades. To gain insight into the regulation of these cascades by KLF2, we used antibody arrays in combination with time-course mRNA microarray analysis. No gross changes in MAPKs were detected; rather, phosphorylation of actin cytoskeleton-associated proteins, including focal adhesion kinase, was markedly repressed by KLF2. Furthermore, we demonstrate that KLF2-mediated inhibition of Jun NH(2)-terminal kinase (JNK) and its downstream targets ATF2/c-Jun is dependent on the cytoskeleton. Specifically, KLF2 directs the formation of typical short basal actin filaments, termed shear fibers by us, which are distinct from thrombin- or tumor necrosis factor-alpha-induced stress fibers. KLF2 is shown to be essential for shear stress-induced cell alignment, concomitant shear fiber assembly, and inhibition of JNK signaling. These findings link the specific effects of shear-induced KLF2 on endothelial morphology to the suppression of JNK MAPK signaling in vascular homeostasis via novel actin shear fibers.


Assuntos
Citoesqueleto de Actina/metabolismo , Células Endoteliais/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Fator 2 Ativador da Transcrição/metabolismo , Animais , Aorta/citologia , Células Cultivadas , Células Endoteliais/citologia , Artéria Femoral/citologia , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fosforilação/fisiologia , Ratos , Fluxo Sanguíneo Regional/fisiologia , Veia Safena/citologia , Estresse Mecânico , Transdução Genética , Veias Umbilicais/citologia , Quinases Associadas a rho/metabolismo
10.
Exp Cell Res ; 317(2): 131-42, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20955695

RESUMO

AIMS: Activin A and transforming growth factor-ß1 (TGF-ß1) belong to the same family of growth and differentiation factors that modulate vascular lesion formation in distinct ways, which we wish to understand mechanistically. METHODS AND RESULTS: We investigated the expression of cell-surface receptors and activation of Smads in human vascular smooth muscle cells (SMCs) and demonstrated that activin receptor-like kinase-1 (ALK-1), ALK-4, ALK-5 and endoglin are expressed in human SMCs. As expected, TGF-ß1 activates Smad1 and Smad2 in these cells. Interestingly, activin A also induces phosphorylation of both Smads, which has not been reported for Smad1 before. Transcriptome analyses of activin A and TGF-ß1 treated SMCs with subsequent Gene-Set Enrichment Analyses revealed that many downstream gene networks are induced by both factors. However, the effect of activin A on expression kinetics of individual genes is less pronounced than for TGF-ß1, which is explained by a more rapid dephosphorylation of Smads and p38-MAPK in response to activin A. Substantial differences in expression of fibronectin, alpha-V integrin and total extracellular collagen synthesis were observed. CONCLUSIONS: Genome-wide mRNA expression analyses clarify the distinct modulation of vascular lesion formation by activin A and TGF-ß1, most significantly because activin A is non-fibrotic.


Assuntos
Receptores de Activinas Tipo II/metabolismo , Ativinas/farmacologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Fenótipo , Fator de Crescimento Transformador beta/farmacologia , Receptores de Ativinas Tipo I/metabolismo , Ativinas/genética , Ativinas/metabolismo , Células Cultivadas , Endotélio Vascular/citologia , Humanos , Miócitos de Músculo Liso/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento/biossíntese , Receptores de Fatores de Crescimento/genética , Receptores de Fatores de Crescimento/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Veia Safena/citologia , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA