Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38908464

RESUMO

BACKGROUND: Accurate insertion of the glenoid guide pin in shoulder arthroplasty (RSA) is important for obtaining optimized glenoid component position and orientation. The objective of this study was to evaluate and compare the accuracy of three glenoid guide pin insertion techniques: 1) traditional software planning using freehand guide pin insertion (freehand), 2) guide pin insertion utilizing patient-specific instrumentation (PSI), and 3) using a mixed reality navigation (MR-NAV) system. METHODS: Twenty (20) computer tomography (CT) scans were obtained from patients exhibiting glenoid erosion patterns according to the Walch and Favard classifications. Cases were planned using validated three-dimensional (3D) preoperative planning software. The CT data was then used to 3D print triplicate plastic models of each glenoid to evaluate the three guide pin insertion techniques. The first technique employed traditional software planning with freehand guide pin insertion. The second method used preoperatively planned PSI guides, while the third utilized a MR-NAV system, which provided real-time holographic guidance during guide pin insertion. Once all guide pins had been inserted into the models, an independent optical tracking system and custom digitization device was used to quantify the position and orientation of each guide pin relative to the glenoid. The outcomes for this study included the absolute mean error in guide pin inclination, version, and entry point relative to the preoperative plan. The absolute Total Global Error was also assessed, which was defined as the sum of the absolute guide pin orientation and position error relative to the preoperative plan. RESULTS: No statistically significant differences between MR-NAV and PSI were found for the inclination error (2±1° versus 2±1°; P=0.056), version error (1±1° versus 1±1°; P=1.000), and Total Global Error (5±1 [mm+deg] versus 5±1 [mm+deg], P=1.000), respectively. The freehand technique produced significantly greater error than MR-NAV and PSI for inclination (5±3°, P≤0.017), version (4±3°, P≤0.032) and Total Global Error (8±3 [mm+deg], P<0.001). No statistically significant differences in the entry point error were observed between all guide pin insertion methods (P≥0.058). DISCUSSION: These results demonstrate that the precision and accuracy of MR-NAV is comparable to PSI and superior to a freehand technique for glenoid guide pin insertion in-vitro. Further study is needed to compare the accuracy of these techniques intra-operatively, in addition to assessing a potential learning curve between surgeons of varying experience with the MR-NAV system.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38750787

RESUMO

BACKGROUND: In 1993, Kouvalchouk described an acromial bone block with a pedicled deltoid flap for the treatment of posterior shoulder instability. This procedure provides a "double blocking" effect in that the acromial autograft restores posterior glenoid bone loss and the deltoid flap functions as a muscular "hammock" resembling the sling effect of the conjoint in the Latarjet procedure. The primary aim of this study was to compare the Kouvalchouk procedure to distal tibial allograft (DTA) reconstruction for the management of posterior shoulder instability with associated bone loss, while the secondary aim was to evaluate the deltoid hammock effect. s METHODS: Ten upper extremity cadavers were evaluated using a validated shoulder testing apparatus in 0° and 60° of glenohumeral abduction in the scapular plane. Testing was first performed on the normal shoulder state and was followed by the creation of a 20% posterior glenoid defect. Subsequently, the Kouvalchouk and DTA procedures were conducted. Forces of 0N, 5N, 10N and 15N were applied to the posterior deltoid tendinous insertion on the Kouvalchouk graft along the physiological muscle line-of-action to evaluate the 'hammock" effect of this procedure. Testing was additionally performed on the Kouvalchouk bone graft with the deltoid muscle sectioned from its bony attachment. For all test states, a posteriorly directed force was applied to the humeral head perpendicular to the direction of the glenoid bone defect, with the associated translation quantified using an optical tracking system. The outcome variable was posterior translation of the humeral head at an applied force magnitude of 30N. RESULTS: The Kouvalchouk procedure with the loaded deltoid flap (10N: P=0.039 and 15N: P<0.001) was significantly better at reducing posterior humeral head translation than the DTA. Overall, increased glenohumeral stability was observed with increased force applied to the posterior deltoid flap in the Kouvalchouk procedure. The 15N Kouvalchouk was most effective at preventing posterior humeral translation, and the difference was statistically significant compared with the 20% glenoid defect (P=0.003), detached Kouvalchouk (P<0.001), and 0N Kouvalchouk (P<0.001). The 15N Kouvalchouk procedure restored posterior shoulder joint stability to near normal levels, such that it was not significantly different from the intact state (P=0.203). CONCLUSIONS: The Kouvalchouk procedure with load applied to the deltoid was found to be biomechanically superior to the DTA for the management of posterior shoulder instability with associated bone loss. Additionally, the results confirmed the presence and effectiveness of the deltoid "hammock" effect.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38762148

RESUMO

BACKGROUND: Knowledge of premorbid glenoid parameters at the time of shoulder arthroplasty, such as inclination, version, joint line position, height, and width, can assist with implant selection, implant positioning, metal augment sizing and/or bone graft dimensions. The objective of this study was to validate a scapular statistical shape model (SSM) in predicting patient-specific glenoid morphology in scapulae with clinically relevant glenoid erosion patterns. METHODS: Computer tomography scans of 30 healthy scapulae were obtained and used as the control group. Each scapula was then virtually eroded to create seven erosion patterns (Walch A1, A2, B2, B3, D, Favard E2, and E3). This resulted in 210 uniquely eroded glenoid models, forming the eroded glenoid group. A scapular SSM, created from a different database of 85 healthy scapulae, was then applied to each eroded scapula to predict the premorbid glenoid morphology. The premorbid glenoid inclination, version, height, width, radius of best fit sphere, and glenoid joint line position were automatically calculated for each of the 210 eroded glenoids. The mean values for all outcome variables were compared across all erosion types between the healthy, eroded, and SSM predicted groups using a two-way repeated-measures analysis of variance. RESULTS: The SSM was able to predict the mean premorbid glenoid parameters of the eroded glenoids with a mean absolute difference of 3±2° for inclination, 3±2° for version, 2±1mm for glenoid height, 2±1mm for glenoid width, 5±4mm for radius of best fit sphere, and 1±1mm for glenoid joint line. The mean SSM predicted values for inclination, version, height, width, and radius were not significantly different than the control group (P>0.05). DISCUSSION: A statistical shape model has been developed that can reliably predict premorbid glenoid morphology and glenoid indices in patients with common glenoid erosion patterns. This technology can serve as a useful template to visually represent the premorbid healthy glenoid in patients with severe glenoid bony erosions. Knowledge of the premorbid glenoid preoperatively can assist with implant selection, positioning, and sizing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA