Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(43): 23327-23334, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34416073

RESUMO

Focal adhesion kinase (FAK) is a key mediator of tumour progression and metastasis. To date, clinical trials of FAK inhibitors have reported disappointing efficacy for oncology indications. We report the design and characterisation of GSK215, a potent, selective, FAK-degrading Proteolysis Targeting Chimera (PROTAC) based on a binder for the VHL E3 ligase and the known FAK inhibitor VS-4718. X-ray crystallography revealed the molecular basis of the highly cooperative FAK-GSK215-VHL ternary complex, and GSK215 showed differentiated in-vitro pharmacology compared to VS-4718. In mice, a single dose of GSK215 induced rapid and prolonged FAK degradation, giving a long-lasting effect on FAK levels (≈96 h) and a marked PK/PD disconnect. This tool PROTAC molecule is expected to be useful for the study of FAK-degradation biology in vivo, and our results indicate that FAK degradation may be a differentiated clinical strategy versus FAK inhibition for the treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , Quinase 1 de Adesão Focal/antagonistas & inibidores , Proteólise/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Benzamidas/química , Benzamidas/farmacocinética , Benzamidas/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Dipeptídeos/química , Dipeptídeos/farmacocinética , Dipeptídeos/farmacologia , Quinase 1 de Adesão Focal/metabolismo , Humanos , Camundongos , Estrutura Molecular , Ubiquitina-Proteína Ligases/metabolismo
2.
Commun Biol ; 7(1): 909, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068257

RESUMO

Metabolic regulation occurs through precise control of enzyme activity. Allomorphy is a post-translational fine control mechanism where the catalytic rate is governed by a conformational switch that shifts the enzyme population between forms with different activities. ß-Phosphoglucomutase (ßPGM) uses allomorphy in the catalysis of isomerisation of ß-glucose 1-phosphate to glucose 6-phosphate via ß-glucose 1,6-bisphosphate. Herein, we describe structural and biophysical approaches to reveal its allomorphic regulatory mechanism. Binding of the full allomorphic activator ß-glucose 1,6-bisphosphate stimulates enzyme closure, progressing through NAC I and NAC III conformers. Prior to phosphoryl transfer, loops positioned on the cap and core domains are brought into close proximity, modulating the environment of a key proline residue. Hence accelerated isomerisation, likely via a twisted anti/C4-endo transition state, leads to the rapid predominance of active cis-P ßPGM. In contrast, binding of the partial allomorphic activator fructose 1,6-bisphosphate arrests ßPGM at a NAC I conformation and phosphoryl transfer to both cis-P ßPGM and trans-P ßPGM occurs slowly. Thus, allomorphy allows a rapid response to changes in food supply while not otherwise impacting substantially on levels of important metabolites.


Assuntos
Domínio Catalítico , Fosfoglucomutase , Prolina , Fosfoglucomutase/metabolismo , Fosfoglucomutase/química , Fosfoglucomutase/genética , Prolina/metabolismo , Prolina/química , Isomerismo , Glucofosfatos/metabolismo , Conformação Proteica , Humanos , Catálise , Modelos Moleculares , Glucose-6-Fosfato/análogos & derivados
3.
Biochim Biophys Acta Bioenerg ; 1860(3): 209-223, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414933

RESUMO

The light-harvesting 2 complex (LH2) of the purple phototrophic bacterium Rhodobacter sphaeroides is a highly efficient, light-harvesting antenna that allows growth under a wide-range of light intensities. In order to expand the spectral range of this antenna complex, we first used a series of competition assays to measure the capacity of the non-native pigments 3-acetyl chlorophyll (Chl) a, Chl d, Chl f or bacteriochlorophyll (BChl) b to replace native BChl a in the B800 binding site of LH2. We then adjusted the B800 site and systematically assessed the binding of non-native pigments. We find that Arg-10 of the LH2 ß polypeptide plays a crucial role in binding specificity, by providing a hydrogen-bond to the 3-acetyl group of native and non-native pigments. Reconstituted LH2 complexes harbouring the series of (B)Chls were examined by transient absorption and steady-state fluorescence spectroscopies. Although slowed 10-fold to ~6 ps, energy transfer from Chl a to B850 BChl a remained highly efficient. We measured faster energy-transfer time constants for Chl d (3.5 ps) and Chl f (2.7 ps), which have red-shifted absorption maxima compared to Chl a. BChl b, red-shifted from the native BChl a, gave extremely rapid (≤0.1 ps) transfer. These results show that modified LH2 complexes, combined with engineered (B)Chl biosynthesis pathways in vivo, have potential for retaining high efficiency whilst acquiring increased spectral range.


Assuntos
Complexos de Proteínas Captadores de Luz/genética , Engenharia de Proteínas , Rhodobacter sphaeroides/química , Bacterioclorofila A/metabolismo , Bacterioclorofilas/metabolismo , Sítios de Ligação/genética , Ligação Proteica , Rhodobacter sphaeroides/genética , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA