Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nucleic Acids Res ; 50(15): 8674-8689, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35904811

RESUMO

CGG repeat expansions in the FMR1 5'UTR cause the neurodegenerative disease Fragile X-associated tremor/ataxia syndrome (FXTAS). These repeats form stable RNA secondary structures that support aberrant translation in the absence of an AUG start codon (RAN translation), producing aggregate-prone peptides that accumulate within intranuclear neuronal inclusions and contribute to neurotoxicity. Here, we show that the most abundant RAN translation product, FMRpolyG, is markedly less toxic when generated from a construct with a non-repetitive alternating codon sequence in place of the CGG repeat. While exploring the mechanism of this differential toxicity, we observed a +1 translational frameshift within the CGG repeat from the arginine to glycine reading frame. Frameshifts occurred within the first few translated repeats and were triggered predominantly by RNA sequence and structural features. Short chimeric R/G peptides form aggregates distinct from those formed by either pure arginine or glycine, and these chimeras induce toxicity in cultured rodent neurons. Together, this work suggests that CGG repeats support translational frameshifting and that chimeric RAN translated peptides may contribute to CGG repeat-associated toxicity in FXTAS and related disorders.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Doenças Neurodegenerativas , Agregação Patológica de Proteínas , Repetições de Trinucleotídeos , Arginina/genética , Ataxia , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil , Glicina/genética , Humanos , Doenças Neurodegenerativas/genética , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
2.
EMBO Rep ; 20(9): e47498, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31347257

RESUMO

A CGG trinucleotide repeat expansion in the 5' UTR of FMR1 causes the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). This repeat supports a non-canonical mode of protein synthesis known as repeat-associated, non-AUG (RAN) translation. The mechanism underlying RAN translation at CGG repeats remains unclear. To identify modifiers of RAN translation and potential therapeutic targets, we performed a candidate-based screen of eukaryotic initiation factors and RNA helicases in cell-based assays and a Drosophila melanogaster model of FXTAS. We identified multiple modifiers of toxicity and RAN translation from an expanded CGG repeat in the context of the FMR1 5'UTR. These include the DEAD-box RNA helicase belle/DDX3X, the helicase accessory factors EIF4B/4H, and the start codon selectivity factors EIF1 and EIF5. Disrupting belle/DDX3X selectively inhibited FMR1 RAN translation in Drosophila in vivo and cultured human cells, and mitigated repeat-induced toxicity in Drosophila and primary rodent neurons. These findings implicate RNA secondary structure and start codon fidelity as critical elements mediating FMR1 RAN translation and identify potential targets for treating repeat-associated neurodegeneration.


Assuntos
Ataxia/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas de Drosophila/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Tremor/metabolismo , Animais , Ataxia/genética , Células Cultivadas , RNA Helicases DEAD-box/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Fatores de Iniciação em Eucariotos/genética , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Masculino , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tremor/genética
3.
J Biol Chem ; 294(49): 18624-18638, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31649034

RESUMO

Repeat-associated non-AUG (RAN) translation is a noncanonical translation initiation event that occurs at nucleotide-repeat expansion mutations that are associated with several neurodegenerative diseases, including fragile X-associated tremor ataxia syndrome (FXTAS), ALS, and frontotemporal dementia (FTD). Translation of expanded repeats produces toxic proteins that accumulate in human brains and contribute to disease pathogenesis. Consequently, RAN translation constitutes a potentially important therapeutic target for managing multiple neurodegenerative disorders. Here, we adapted a previously developed RAN translation assay to a high-throughput format to screen 3,253 bioactive compounds for inhibition of RAN translation of expanded CGG repeats associated with FXTAS. We identified five diverse small molecules that dose-dependently inhibited CGG RAN translation, while relatively sparing canonical translation. All five compounds also inhibited RAN translation of expanded GGGGCC repeats associated with ALS and FTD. Using CD and native gel analyses, we found evidence that three of these compounds, BIX01294, CP-31398, and propidium iodide, bind directly to the repeat RNAs. These findings provide proof-of-principle supporting the development of selective small-molecule RAN translation inhibitors that act across multiple disease-causing repeats.


Assuntos
Esclerose Lateral Amiotrófica/genética , Ataxia/genética , Síndrome do Cromossomo X Frágil/genética , Tremor/genética , Expansão das Repetições de Trinucleotídeos/genética , Esclerose Lateral Amiotrófica/tratamento farmacológico , Animais , Ataxia/tratamento farmacológico , Azepinas/farmacologia , Azepinas/uso terapêutico , Células Cultivadas , Dicroísmo Circular , Expansão das Repetições de DNA/efeitos dos fármacos , Expansão das Repetições de DNA/genética , Avaliação Pré-Clínica de Medicamentos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Células HEK293 , Humanos , Doenças Neurodegenerativas/genética , Propídio/farmacologia , Propídio/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Ratos , Tremor/tratamento farmacológico , Expansão das Repetições de Trinucleotídeos/efeitos dos fármacos
4.
J Am Soc Nephrol ; 27(2): 482-94, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26054544

RESUMO

Evidence from multiple studies supports the concept that both glomerular filtration and proximal tubule (PT) reclamation affect urinary albumin excretion rate. To better understand these roles of glomerular filtration and PT uptake, we investigated these processes in two distinct animal models. In a rat model of acute exogenous albumin overload, we quantified glomerular sieving coefficients (GSC) and PT uptake of Texas Red-labeled rat serum albumin using two-photon intravital microscopy. No change in GSC was observed, but a significant decrease in PT albumin uptake was quantified. In a second model, loss of endogenous albumin was induced in rats by podocyte-specific transgenic expression of diphtheria toxin receptor. In these albumin-deficient rats, exposure to diphtheria toxin induced an increase in albumin GSC and albumin filtration, resulting in increased exposure of the PTs to endogenous albumin. In this case, PT albumin reabsorption was markedly increased. Analysis of known albumin receptors and assessment of cortical protein expression in the albumin overload model, conducted to identify potential proteins and pathways affected by acute protein overload, revealed changes in the expression levels of calreticulin, disabled homolog 2, NRF2, angiopoietin-2, and proteins involved in ATP synthesis. Taken together, these results suggest that a regulated PT cell albumin uptake system can respond rapidly to different physiologic conditions to minimize alterations in serum albumin level.


Assuntos
Albuminas/farmacocinética , Túbulos Renais Proximais/metabolismo , Animais , Feminino , Túbulos Renais Proximais/fisiologia , Ratos , Ratos Wistar
5.
Am J Physiol Renal Physiol ; 310(10): F1089-102, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26887834

RESUMO

Serum albumin is the most abundant plasma protein and has a long half-life due to neonatal Fc receptor (FcRn)-mediated transcytosis by many cell types, including proximal tubule cells of the kidney. Albumin also interacts with, and is modified by, many small and large molecules. Therefore, the focus of the present study was to address the impact of specific known biological albumin modifications on albumin-FcRn binding and cellular handling. Binding at pH 6.0 and 7.4 was performed since FcRn binds albumin strongly at acidic pH and releases it after transcytosis at physiological pH. Equilibrium dissociation constants were measured using microscale thermophoresis. Since studies have shown that glycated albumin is excreted in the urine at a higher rate than unmodified albumin, we studied glucose and methylgloxal modified albumins (21 days). All had reduced affinity to FcRn at pH 6.0, suggesting these albumins would not be returned to the circulation via the transcytotic pathway. To address why modified albumin has reduced affinity, we analyzed the structure of the modified albumins using small-angle X-ray scattering. This analysis showed significant structural changes occurring to albumin with glycation, particularly in the FcRn-binding region, which could explain the reduced affinity to FcRn. These results offer an explanation for enhanced proximal tubule-mediated sorting and clearance of abnormal albumins.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Túbulos Renais Proximais/metabolismo , Receptores Fc/metabolismo , Albumina Sérica/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Produtos Finais de Glicação Avançada , Humanos , Imunoglobulina G/metabolismo , Glomérulos Renais/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Espalhamento a Baixo Ângulo , Albumina Sérica/química , Difração de Raios X , Albumina Sérica Glicada
6.
J Med Chem ; 67(7): 5758-5782, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38511649

RESUMO

Eukaryotic translation initiation factor 2B (eIF2B) is a key component of the integrated stress response (ISR), which regulates protein synthesis and stress granule formation in response to cellular insult. Modulation of the ISR has been proposed as a therapeutic strategy for treatment of neurodegenerative diseases such as vanishing white matter (VWM) disease and amyotrophic lateral sclerosis (ALS) based on its ability to improve cellular homeostasis and prevent neuronal degeneration. Herein, we report the small-molecule discovery campaign that identified potent, selective, and CNS-penetrant eIF2B activators using both structure- and ligand-based drug design. These discovery efforts culminated in the identification of DNL343, which demonstrated a desirable preclinical drug profile, including a long half-life and high oral bioavailability across preclinical species. DNL343 was progressed into clinical studies and is currently undergoing evaluation in late-stage clinical trials for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Leucoencefalopatias , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Mutação , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/metabolismo , Encéfalo/metabolismo , Leucoencefalopatias/metabolismo
7.
Acta Neuropathol Commun ; 8(1): 122, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753055

RESUMO

An intronic hexanucleotide repeat expansion in C9ORF72 causes familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This repeat is thought to elicit toxicity through RNA mediated protein sequestration and repeat-associated non-AUG (RAN) translation of dipeptide repeat proteins (DPRs). We generated a series of transgenic Drosophila models expressing GGGGCC (G4C2) repeats either inside of an artificial intron within a GFP reporter or within the 5' untranslated region (UTR) of GFP placed in different downstream reading frames. Expression of 484 intronic repeats elicited minimal alterations in eye morphology, viability, longevity, or larval crawling but did trigger RNA foci formation, consistent with prior reports. In contrast, insertion of repeats into the 5' UTR elicited differential toxicity that was dependent on the reading frame of GFP relative to the repeat. Greater toxicity correlated with a short and unstructured carboxyl terminus (C-terminus) in the glycine-arginine (GR) RAN protein reading frame. This change in C-terminal sequence triggered nuclear accumulation of all three RAN DPRs. A similar differential toxicity and dependence on the GR C-terminus was observed when repeats were expressed in rodent neurons. The presence of the native C-termini across all three reading frames was partly protective. Taken together, these findings suggest that C-terminal sequences outside of the repeat region may alter the behavior and toxicity of dipeptide repeat proteins derived from GGGGCC repeats.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Expansão das Repetições de DNA , Demência Frontotemporal/genética , Biossíntese de Proteínas/genética , Fases de Leitura/genética , Animais , Dipeptídeos , Modelos Animais de Doenças , Drosophila , Ratos , Ratos Long-Evans
8.
Nat Neurosci ; 23(3): 386-397, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066985

RESUMO

Repeat-associated non-AUG-initiated translation of expanded CGG repeats (CGG RAN) from the FMR1 5'-leader produces toxic proteins that contribute to neurodegeneration in fragile X-associated tremor/ataxia syndrome. Here we describe how unexpanded CGG repeats and their translation play conserved roles in regulating fragile X protein (FMRP) synthesis. In neurons, CGG RAN acts as an inhibitory upstream open reading frame to suppress basal FMRP production. Activation of mGluR5 receptors enhances FMRP synthesis. This enhancement requires both the CGG repeat and CGG RAN initiation sites. Using non-cleaving antisense oligonucleotides (ASOs), we selectively blocked CGG RAN. This ASO blockade enhanced endogenous FMRP expression in human neurons. In human and rodent neurons, CGG RAN-blocking ASOs suppressed repeat toxicity and prolonged survival. These findings delineate a native function for CGG repeats and RAN translation in regulating basal and activity-dependent FMRP synthesis, and they demonstrate the therapeutic potential of modulating CGG RAN translation in fragile X-associated disorders.


Assuntos
Expansão das Repetições de DNA/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Repetições de Trinucleotídeos/genética , Animais , Linhagem Celular , Sobrevivência Celular/genética , Feminino , Proteína do X Frágil da Deficiência Intelectual/biossíntese , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Neurônios/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Biossíntese de Proteínas , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/biossíntese , Receptor de Glutamato Metabotrópico 5/genética
9.
Cell Rep ; 27(4): 1133-1150.e8, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018129

RESUMO

The majority of individuals with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) exhibit neuronal cytoplasmic inclusions rich in the RNA binding protein TDP43. Even so, the relation between the RNA binding properties of TDP43 and neurodegeneration remains obscure. Here, we show that engineered mutations disrupting a salt bridge between the RNA recognition motifs of TDP43 interfere with RNA binding and eliminate the recognition of native TDP43 substrates. The same mutations dramatically destabilize TDP43, alter its subcellular localization, and abrogate TDP43-dependent neurodegeneration. Worms harboring homologous TDP-1 mutations phenocopy knockout strains, confirming the necessity of salt bridge residues for TDP43 function. Moreover, the accumulation of functional TDP43, but not RNA binding-deficient variants, disproportionately affects transcripts encoding ribosome and oxidative phosphorylation components. These studies demonstrate the significance of the salt bridge in sustaining TDP43 stability and RNA binding properties, factors that are crucial for neurodegeneration arising from TDP43 deposition in ALS and FTD.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Mutação , Doenças Neurodegenerativas/patologia , RNA/metabolismo , Sais/química , Animais , Caenorhabditis elegans , Feminino , Humanos , Masculino , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Agregados Proteicos , Estabilidade Proteica , RNA/química , RNA Mitocondrial/química , RNA Mitocondrial/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Ratos
10.
Nat Commun ; 8(1): 2005, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222490

RESUMO

Repeat-associated non-AUG (RAN) translation allows for unconventional initiation at disease-causing repeat expansions. As RAN translation contributes to pathogenesis in multiple neurodegenerative disorders, determining its mechanistic underpinnings may inform therapeutic development. Here we analyze RAN translation at G4C2 repeat expansions that cause C9orf72-associated amyotrophic lateral sclerosis and frontotemporal dementia (C9RAN) and at CGG repeats that cause fragile X-associated tremor/ataxia syndrome. We find that C9RAN translation initiates through a cap- and eIF4A-dependent mechanism that utilizes a CUG start codon. C9RAN and CGG RAN are both selectively enhanced by integrated stress response (ISR) activation. ISR-enhanced RAN translation requires an eIF2α phosphorylation-dependent alteration in start codon fidelity. In parallel, both CGG and G4C2 repeats trigger phosphorylated-eIF2α-dependent stress granule formation and global translational suppression. These findings support a model whereby repeat expansions elicit cellular stress conditions that favor RAN translation of toxic proteins, creating a potential feed-forward loop that contributes to neurodegeneration.


Assuntos
Proteína C9orf72/genética , Doenças Neurodegenerativas/genética , Iniciação Traducional da Cadeia Peptídica/genética , Estresse Fisiológico/genética , Expansão das Repetições de Trinucleotídeos/genética , Animais , Extratos Celulares , Códon de Iniciação/genética , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Células HEK293 , Células HeLa , Humanos , Neurônios , Fosforilação/genética , Cultura Primária de Células , Coelhos , Ratos , Reticulócitos
11.
PLoS One ; 11(10): e0165084, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27776165

RESUMO

Hexanucleotide repeat expansions in C9orf72 are the most common inherited cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The expansions elicit toxicity in part through repeat-associated non-AUG (RAN) translation of the intronic (GGGGCC)n sequence into dipeptide repeat-containing proteins (DPRs). Little is known, however, about the structural characteristics and aggregation propensities of the dipeptide units comprising DPRs. To address this question, we synthesized dipeptide units corresponding to the three sense-strand RAN translation products, analyzed their structures by circular dichroism, electron microscopy and dye binding assays, and assessed their relative toxicity when applied to primary cortical neurons. Short, glycine-arginine (GR)3 dipeptides formed spherical aggregates and selectively reduced neuronal survival compared to glycine-alanine (GA)3 and glycine-proline (GP)3 dipeptides. Doubling peptide length had little effect on the structure of GR or GP peptides, but (GA)6 peptides formed ß-sheet rich aggregates that bound thioflavin T and Congo red yet lacked the typical fibrillar morphology of amyloids. Aging of (GA)6 dipeptides increased their ß-sheet content and enhanced their toxicity when applied to neurons. We also observed that the relative toxicity of each tested dipeptide was proportional to peptide internalization. Our results demonstrate that different C9orf72-related dipeptides exhibit distinct structural properties that correlate with their relative toxicity.


Assuntos
Expansão das Repetições de DNA , Dipeptídeos/química , Dipeptídeos/toxicidade , Neurônios/citologia , Proteínas/genética , Esclerose Lateral Amiotrófica/genética , Animais , Proteína C9orf72 , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dicroísmo Circular , Demência Frontotemporal/genética , Predisposição Genética para Doença , Humanos , Modelos Moleculares , Mutação , Neurônios/efeitos dos fármacos , Estrutura Secundária de Proteína , Ratos
12.
Cell Rep ; 12(7): 1169-83, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26257172

RESUMO

Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous distal symmetric polyneuropathy. Whole-exome sequencing (WES) of 40 individuals from 37 unrelated families with CMT-like peripheral neuropathy refractory to molecular diagnosis identified apparent causal mutations in ∼ 45% (17/37) of families. Three candidate disease genes are proposed, supported by a combination of genetic and in vivo studies. Aggregate analysis of mutation data revealed a significantly increased number of rare variants across 58 neuropathy-associated genes in subjects versus controls, confirmed in a second ethnically discrete neuropathy cohort, suggesting that mutation burden potentially contributes to phenotypic variability. Neuropathy genes shown to have highly penetrant Mendelizing variants (HPMVs) and implicated by burden in families were shown to interact genetically in a zebrafish assay exacerbating the phenotype established by the suppression of single genes. Our findings suggest that the combinatorial effect of rare variants contributes to disease burden and variable expressivity.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Exoma , Carga Genética , Doenças do Sistema Nervoso Periférico/genética , Fenótipo , Animais , Feminino , Variação Genética , Proteínas de Choque Térmico HSP40/genética , Humanos , Masculino , Mutação , Proteína P2 de Mielina/genética , Linhagem , Penetrância , Serina C-Palmitoiltransferase/genética , Supressão Genética , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA