Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
EMBO J ; 41(2): e106973, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34704277

RESUMO

Circadian rhythms regulate diverse aspects of gastrointestinal physiology ranging from the composition of microbiota to motility. However, development of the intestinal circadian clock and detailed mechanisms regulating circadian physiology of the intestine remain largely unknown. In this report, we show that both pluripotent stem cell-derived human intestinal organoids engrafted into mice and patient-derived human intestinal enteroids possess circadian rhythms and demonstrate circadian phase-dependent necrotic cell death responses to Clostridium difficile toxin B (TcdB). Intriguingly, mouse and human enteroids demonstrate anti-phasic necrotic cell death responses to TcdB. RNA-Seq analysis shows that ~3-10% of the detectable transcripts are rhythmically expressed in mouse and human enteroids. Remarkably, we observe anti-phasic gene expression of Rac1, a small GTPase directly inactivated by TcdB, between mouse and human enteroids, and disruption of Rac1 abolishes clock-dependent necrotic cell death responses. Our findings uncover robust functions of circadian rhythms regulating clock-controlled genes in both mouse and human enteroids governing organism-specific, circadian phase-dependent necrotic cell death responses, and lay a foundation for human organ- and disease-specific investigation of clock functions using human organoids for translational applications.


Assuntos
Relógios Circadianos , Jejuno/citologia , Organoides/metabolismo , Animais , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Morte Celular , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Organoides/efeitos dos fármacos , Organoides/fisiologia , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
2.
Front Physiol ; 12: 738471, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658922

RESUMO

Living organisms anticipate the seasons by tracking the proportion of light and darkness hours within a day-photoperiod. The limits of photoperiod measurement can be investigated in the subterranean rodents tuco-tucos (Ctenomys aff. knighti), which inhabit dark underground tunnels. Their exposure to light is sporadic and, remarkably, results from their own behavior of surface emergence. Thus, we investigated the endogenous and exogenous regulation of this behavior and its consequences to photoperiod measurement. In the field, animals carrying biologgers displayed seasonal patterns of daily surface emergence, exogenously modulated by temperature. In the laboratory, experiments with constant lighting conditions revealed the endogenous regulation of seasonal activity by the circadian clock, which has a multi-oscillatory structure. Finally, mathematical modeling corroborated that tuco-tuco's light exposure across the seasons is sufficient for photoperiod encoding. Together, our results elucidate the interrelationship between the circadian clock and temperature in shaping seasonal light exposure patterns that convey photoperiod information in an extreme photic environment.

3.
Cell Mol Gastroenterol Hepatol ; 12(5): 1847-1872.e0, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34534703

RESUMO

BACKGROUND & AIMS: Circadian rhythms are daily physiological oscillations driven by the circadian clock: a 24-hour transcriptional timekeeper that regulates hormones, inflammation, and metabolism. Circadian rhythms are known to be important for health, but whether their loss contributes to colorectal cancer is not known. We tested the nonredundant clock gene Bmal1 in intestinal homeostasis and tumorigenesis, using the Apcmin model of colorectal cancer. METHODS: Bmal1 mutant, epithelium-conditional Bmal1 mutant, and photoperiod (day/night cycle) disrupted mice bearing the Apcmin allele were assessed for tumorigenesis. Tumors and normal nontransformed tissue were characterized. Intestinal organoids were assessed for circadian transcription rhythms by RNA sequencing, and in vivo and organoid assays were used to test Bmal1-dependent proliferation and self-renewal. RESULTS: Loss of Bmal1 or circadian photoperiod increases tumor initiation. In the intestinal epithelium the clock regulates transcripts involved in regeneration and intestinal stem cell signaling. Tumors have no self-autonomous clock function and only weak clock function in vivo. Apcmin clock-disrupted tumors show high Yes-associated protein 1 (Hippo signaling) activity but show low Wnt (Wingless and Int-1) activity. Intestinal organoid assays show that loss of Bmal1 increases self-renewal in a Yes-associated protein 1-dependent manner. CONCLUSIONS: Bmal1 regulates intestinal stem cell pathways, including Hippo signaling, and the loss of circadian rhythms potentiates tumor initiation. Transcript profiling: GEO accession number: GSE157357.


Assuntos
Fatores de Transcrição ARNTL/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Relógios Circadianos/genética , Regulação da Expressão Gênica , Transdução de Sinais , Células-Tronco/metabolismo , Animais , Autorrenovação Celular/genética , Ritmo Circadiano , Via de Sinalização Hippo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Mucosa/imunologia , Mucosa/metabolismo , Mucosa/patologia , Mutação , Proteínas de Sinalização YAP/metabolismo
4.
J Biol Rhythms ; 35(3): 302-316, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32013693

RESUMO

The daily proportion of light and dark hours (photoperiod) changes annually and plays an important role in the synchronization of seasonal biological phenomena, such as reproduction, hibernation, and migration. In mammals, the first step of photoperiod transduction occurs in the suprachiasmatic nuclei (SCN), the circadian pacemaker that also coordinates 24-h activity rhythms. Thus, in parallel with its role in annual synchronization, photoperiod variation acutely shapes day/night activity patterns, which vary throughout the year. Systematic studies of this behavioral modulation help understand the mechanisms behind its transduction at the SCN level. To explain how entrainment mechanisms could account for daily activity patterns under different photoperiods, Colin Pittendrigh and Serge Daan proposed a conceptual model in which the pacemaker would be composed of 2 coupled, evening (E) and morning (M), oscillators. Although the E-M model has existed for more than 40 years now, its physiological bases are still not fully resolved, and it has not been tested quantitatively under different photoperiods. To better explore the implications of the E-M model, we performed computer simulations of 2 coupled limit-cycle oscillators. Four model configurations were exposed to systematic variation of skeleton photoperiods, and the resulting daily activity patterns were assessed. The criterion for evaluating different model configurations was the successful reproduction of 2 key behavioral phenomena observed experimentally: activity psi-jumps and photoperiod-induced changes in activity phase duration. We compared configurations with either separate light inputs to E and M or the same light inputs to both oscillators. The former replicated experimental results closely, indicating that the configuration with separate E and M light inputs is the mechanism that best reproduces the effects of different skeleton photoperiods on day/night activity patterns. We hope this model can contribute to the search for E and M and their light input organization in the SCN.


Assuntos
Ritmo Circadiano , Drosophila/fisiologia , Modelos Teóricos , Fotoperíodo , Núcleo Supraquiasmático/fisiologia , Animais , Atividade Motora
5.
J Biol Rhythms ; 34(1): 105-110, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30595077

RESUMO

Artificial lab manipulation of LD cycles has enabled simulations of the disruptive conditions found in modern human societies, such as jet-lag, night-work and light at night. New techniques using animal models have been developed, and these can greatly improve our understanding of circadian disruption. Some of these techniques, such as in vivo bioluminescence assays, require minimum external light. This requirement is challenging because the usual lighting protocols applied in circadian desynchronization experiments rely on considerable light input. Here, we present a novel LD regimen that can disrupt circadian rhythms with little light per day, based on computer simulations of a model limit-cycle oscillator. The model predicts that a single light pulse per day has the potential to disturb rhythmicity when pulse times are randomly distributed within an interval. Counterintuitively, the rhythm still preserves an underlying 24-h periodicity when this interval is as large as 14 h, indicating that day/night cues are still detectable. Only when pulses are spread throughout the whole 24-h day does the rhythm lose any day-to-day period correlation. In addition, the model also reveals that stronger pulses of brighter light should exacerbate the disrupting effects. We propose the use of this LD schedule-which would be compatible with the requirements of in vivo bioluminescence assays-to help understand circadian disruption and associated illnesses.


Assuntos
Ritmo Circadiano/efeitos da radiação , Luz , Iluminação , Modelos Teóricos , Fotoperíodo , Animais , Simulação por Computador , Humanos , Síndrome do Jet Lag , Jornada de Trabalho em Turnos
6.
Front Behav Neurosci ; 10: 143, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27458354

RESUMO

Rodents anticipate rewarding stimuli such as daily meals, mates, and stimulant drugs. When a single meal is provided daily at a fixed time of day, an increase in activity, known as food anticipatory activity (FAA), occurs several hours before feeding time. The factors affecting the expression of FAA have not been well-studied. Understanding these factors may provide clues to the undiscovered anatomical substrates of food entrainment. In this study we determined whether wheel-running activity, which is also rewarding to rodents, modulated the robustness of FAA. We found that access to a freely rotating wheel enhanced the robustness of FAA. This enhancement was lost when the wheel was removed. In addition, while prior exposure to a running wheel alone did not enhance FAA, the presence of a locked wheel did enhance FAA as long as mice had previously run in the wheel. Together, these data suggest that FAA, like wheel-running activity, is influenced by reward signaling.

7.
Sci Rep ; 6: 21945, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26904978

RESUMO

The mammalian circadian system is a hierarchical network of oscillators organized to optimally coordinate behavior and physiology with daily environmental cycles. The suprachiasmatic nucleus (SCN) of the hypothalamus is at the top of this hierarchy, synchronizing to the environmental light-dark cycle, and coordinates the phases of peripheral clocks. The Period genes are critical components of the molecular timekeeping mechanism of these clocks. Circadian clocks are disabled in Period1/2/3 triple mutant mice, resulting in arrhythmic behavior in constant conditions. We uncovered rhythmic behavior in this mutant by simply exposing the mice to timed access to a palatable meal or running wheel. The emergent circadian behavior rhythms free-ran for many cycles under constant conditions without cyclic environmental cues. Together, these data demonstrate that the palatable meal-inducible circadian oscillator (PICO) and wheel-inducible circadian oscillator (WICO) are generated by non-canonical circadian clocks. Entrainment of these novel oscillators by palatable snacks and timed exercise could become novel therapeutics for human conditions caused by disruptions of the circadian clocks.


Assuntos
Proteínas CLOCK/genética , Proteínas Circadianas Period/genética , Condicionamento Físico Animal , Óleos de Plantas/administração & dosagem , Animais , Proteínas CLOCK/metabolismo , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/genética , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Ingestão de Alimentos/fisiologia , Feminino , Alimentos , Regulação da Expressão Gênica , Humanos , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óleo de Amendoim , Proteínas Circadianas Period/deficiência , Fotoperíodo , Corrida , Transdução de Sinais , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Supraquiasmático/fisiologia , Núcleo Supraquiasmático/efeitos da radiação
8.
Sci Rep ; 6: 34264, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27698436

RESUMO

Synchronization of biological rhythms to the 24-hour day/night has long been studied with model organisms, under artificial light/dark cycles in the laboratory. The commonly used rectangular light/dark cycles, comprising hours of continuous light and darkness, may not be representative of the natural light exposure for most species, including humans. Subterranean rodents live in dark underground tunnels and offer a unique opportunity to investigate extreme mechanisms of photic entrainment in the wild. Here, we show automated field recordings of the daily light exposure patterns in a South American subterranean rodent, the tuco-tuco (Ctenomys aff. knighti ). In the laboratory, we exposed tuco-tucos to a simplified version of this natural light exposure pattern, to determine the minimum light timing information that is necessary for synchronization. As predicted from our previous studies using mathematical modeling, the activity rhythm of tuco-tucos synchronized to this mostly simplified light/dark regimen consisting of a single light pulse per day, occurring at randomly scattered times within a day length interval. Our integrated semi-natural, lab and computer simulation findings indicate that photic entrainment of circadian oscillators is robust, even in face of artificially reduced exposure and increased phase instability of the synchronizing stimuli.


Assuntos
Ritmo Circadiano , Escuridão , Luz , Roedores/fisiologia , Animais , Estações do Ano
9.
PLoS One ; 8(7): e68243, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874562

RESUMO

Subterranean rodents spend most of the day inside underground tunnels, where there is little daily change in environmental variables. Our observations of tuco-tucos (Ctenomys aff. knighti) in a field enclosure indicated that these animals perceive the aboveground light-dark cycle by several bouts of light-exposure at irregular times during the light hours of the day. To assess whether such light-dark pattern acts as an entraining agent of the circadian clock, we first constructed in laboratory the Phase Response Curve for 1 h light-pulses (1000lux). Its shape is qualitatively similar to other curves reported in the literature and to our knowledge it is the first Phase Response Curve of a subterranean rodent. Computer simulations were performed with a non-linear limit-cycle oscillator subjected to a simple model of the light regimen experienced by tuco-tucos. Results showed that synchronization is achieved even by a simple regimen of a single daily light pulse scattered uniformly along the light hours of the day. Natural entrainment studies benefit from integrated laboratory, field and computational approaches.


Assuntos
Adaptação Fisiológica/fisiologia , Luz , Modelos Biológicos , Fotoperíodo , Roedores/fisiologia , Animais , Ritmo Circadiano/fisiologia , Simulação por Computador , Ecossistema , Abrigo para Animais , Comportamento de Nidação/fisiologia
10.
PLoS One ; 7(5): e37918, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22649565

RESUMO

South American subterranean rodents (Ctenomys aff. knighti), commonly known as tuco-tucos, display nocturnal, wheel-running behavior under light-dark (LD) conditions, and free-running periods >24 h in constant darkness (DD). However, several reports in the field suggested that a substantial amount of activity occurs during daylight hours, leading us to question whether circadian entrainment in the laboratory accurately reflects behavior in natural conditions. We compared circadian patterns of locomotor activity in DD of animals previously entrained to full laboratory LD cycles (LD12:12) with those of animals that were trapped directly from the field. In both cases, activity onsets in DD immediately reflected the previous dark onset or sundown. Furthermore, freerunning periods upon release into DD were close to 24 h indicating aftereffects of prior entrainment, similarly in both conditions. No difference was detected in the phase of activity measured with and without access to a running wheel. However, when individuals were observed continuously during daylight hours in a semi-natural enclosure, they emerged above-ground on a daily basis. These day-time activities consisted of foraging and burrow maintenance, suggesting that the designation of this species as nocturnal might be inaccurate in the field. Our study of a solitary subterranean species suggests that the circadian clock is entrained similarly under field and laboratory conditions and that day-time activity expressed only in the field is required for foraging and may not be time-dictated by the circadian pacemaker.


Assuntos
Comportamento Animal/fisiologia , Ritmo Circadiano/fisiologia , Ecossistema , Atividade Motora/fisiologia , Roedores/fisiologia , Animais , Argentina , Observação , Fotoperíodo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA