Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 117(7): 2209-2222, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32311081

RESUMO

Apple (Malus domestica) fruits accumulate negligible levels of carotenoids, antioxidant pigments that are precursors for vitamin A in humans. As vitamin A deficiency is an important public health issue, we aimed at increasing carotenoids in apple by constitutively expressing the Arabidopsis thaliana DXR gene, one of the key regulatory steps in the plastidial isoprenoid pathway. For this purpose, we optimized an Agrobacterium-mediated transformation method in the commercial Fuji Raku Raku variety. This resulted in a shoot establishment efficiency of 0.75% at 20 weeks after infection. Molecular and microscopical analyses revealed that 80% of the hygromycin resistant shoots contained and expressed AtDXR:eGFP and that the AtDXR:eGFP fusion protein located in plastids. Transgenic seedlings displayed up to 3-fold increase in total carotenoids and in individual carotenoids compared to the WT, correlating with an increased transcript abundance of endogenous carotenogenic genes such as MdDXS, MdPSY1, MdPSY2, MdPSY3, MdLCYB1, and MdLCYB2. In addition, buds of 2-year-old transgenic dormant trees showed an increment up to 3-fold in lutein, and transient transformation of fruits revealed that AtDXR induced a 2-fold increment in total carotenoids. Thus, these results suggest that DXR may be a good candidate for increasing carotenoid levels in apple fruits through metabolic engineering.


Assuntos
Agrobacterium/genética , Aldose-Cetose Isomerases/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Carotenoides/metabolismo , Malus/genética , Aldose-Cetose Isomerases/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Malus/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Transformação Genética
2.
J Exp Bot ; 69(16): 4113-4126, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29860511

RESUMO

Phytoene synthase (PSY) is the first committed enzyme of the carotenoid biosynthesis pathway and the most important point of regulation. Carotenoids are precursors of abscisic acid (ABA), which mediates abiotic stress tolerance responses in plants. ABA activates the synthesis of its own precursors through induction of PSY expression. Carrot, a species that accumulates very high amounts of carotenoids in its reserve root, has two PSY paralog genes that are expressed differentially in the root. Here, we determined that DcPSY2 expression is induced by salt stress and ABA. A DcPSY2 promoter fragment was obtained and characterized. Bioinformatic analysis showed the presence of three ABA responsive elements (ABREs). Through overexpressing pPSY2:GFP in Nicotiana tabacum we determined that all three ABREs are necessary for the ABA response. In the carrot transcriptome, we identified three ABRE binding protein (DcAREB) transcription factor candidates that localized in the nucleus, but only one, DcAREB3, was induced under ABA treatment in carrot roots. We found that AREB transcription factors bind to the carrot DcPSY2 promoter and transactivate the expression of reporter genes. We conclude that DcPSY2 is involved in ABA-mediated salt stress tolerance in carrot through the binding of AREB transcription factors to its promoter.


Assuntos
Ácido Abscísico/metabolismo , Daucus carota/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/biossíntese , Estresse Salino , Daucus carota/genética , Indução Enzimática , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas
3.
Biochem Soc Trans ; 42(2): 370-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24646246

RESUMO

Self-fertilization, which results in reduced fitness of offspring, is a common problem in hermaphrodite angiosperms. To prevent this, many plants utilize SI (self-incompatibility), which is determined by the multi-allelic S-locus, that allows discrimination between self (incompatible) and non-self (compatible) pollen by the pistil. In poppy (Papaver rhoeas), the pistil S-determinant (PrsS) is a small secreted protein which interacts with the pollen S-determinant PrpS, a ~20 kDa novel transmembrane protein. Interaction of matching pollen and pistil S-determinants results in self-recognition, initiating a Ca²âº-dependent signalling network in incompatible pollen. This triggers several downstream events, including alterations to the cytoskeleton, phosphorylation of sPPases (soluble inorganic pyrophosphatases) and an MAPK (mitogen-activated protein kinase), increases in ROS (reactive oxygen species) and nitric oxide (NO), and activation of several caspase-like activities. This results in the inhibition of pollen tube growth, prevention of self-fertilization and ultimately PCD (programmed cell death) in incompatible pollen. The present review focuses on our current understanding of the integration of these signals with their targets in the SI/PCD network. We also discuss our recent functional expression of PrpS in Arabidopsis thaliana pollen.


Assuntos
Papaver/metabolismo , Papaver/fisiologia , Proteínas de Plantas/metabolismo , Polinização/fisiologia , Citoesqueleto/genética , Citoesqueleto/metabolismo , Óxido Nítrico/metabolismo , Papaver/genética , Proteínas de Plantas/genética , Polinização/genética , Espécies Reativas de Oxigênio/metabolismo
4.
Front Plant Sci ; 12: 677553, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512681

RESUMO

Carotenoids are pigments with important nutritional value in the human diet. As antioxidant molecules, they act as scavengers of free radicals enhancing immunity and preventing cancer and cardiovascular diseases. Moreover, α-carotene and ß-carotene, the main carotenoids of carrots (Daucus carota) are precursors of vitamin A, whose deficiency in the diet can trigger night blindness and macular degeneration. With the aim of increasing the carotenoid content in fruit flesh, three key genes of the carotenoid pathway, phytoene synthase (DcPSY2) and lycopene cyclase (DcLCYB1) from carrots, and carotene desaturase (XdCrtI) from the yeast Xanthophyllomyces dendrorhous, were optimized for expression in apple and cloned under the Solanum chilense (tomatillo) polygalacturonase (PG) fruit specific promoter. A biotechnological platform was generated and functionally tested by subcellular localization, and single, double and triple combinations were both stably transformed in tomatoes (Solanum lycopersicum var. Microtom) and transiently transformed in Fuji apple fruit flesh (Malus domestica). We demonstrated the functionality of the S. chilense PG promoter by directing the expression of the transgenes specifically to fruits. Transgenic tomato fruits expressing DcPSY2, DcLCYB1, and DcPSY2-XdCRTI, produced 1.34, 2.0, and 1.99-fold more total carotenoids than wild-type fruits, respectively. Furthermore, transgenic tomatoes expressing DcLCYB1, DcPSY2-XdCRTI, and DcPSY2-XdCRTI-DcLCYB1 exhibited an increment in ß-carotene levels of 2.5, 3.0, and 2.57-fold in comparison with wild-type fruits, respectively. Additionally, Fuji apple flesh agroinfiltrated with DcPSY2 and DcLCYB1 constructs showed a significant increase of 2.75 and 3.11-fold in total carotenoids and 5.11 and 5.84-fold in ß-carotene, respectively whereas the expression of DcPSY2-XdCRTI and DcPSY2-XdCRTI-DcLCYB1 generated lower, but significant changes in the carotenoid profile of infiltrated apple flesh. The results in apple demonstrate that DcPSY2 and DcLCYB1 are suitable biotechnological genes to increase the carotenoid content in fruits of species with reduced amounts of these pigments.

5.
Plant Sci ; 291: 110327, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31928663

RESUMO

Daucus carota is a biennale crop that develops an edible storage root. Orange carrots, the most consumed cultivar worldwide, accumulate high levels of ß-carotene and α-carotene in the storage root during secondary growth. Genes involved in ß-carotene synthesis have been identified in carrots and unlike most species, D. carota has two ζ-carotene desaturase genes, named ZDS1 and ZDS2, that share 91.3 % identity in their coding regions. ZDS1 expression falls during leaf, but not root development, while ZDS2 is induced in leaves and storage roots of a mature plant. In this work, by means of post-transcriptional gene silencing, we determined that ZDS1 is essential for initial carrot development. The suppression of the expression of this gene by RNAi triggered a reduction in the transcript levels of ZDS2 and PSY2 genes, with a concomitant decrease in the carotenoid content in both, leaves and storage roots. On the contrary, transgenic lines with reduced ZDS2 transcript abundance maintain the same levels of expression of endogenous ZDS1 and PSY2 and carotenoid profile as wild-type plants. The simultaneous silencing of ZDS1 and ZDS2 resulted in lines with a negligible leaf and root development, as well as significantly lower endogenous PSY2 expression. Further functional analyses, such as a plastidial subcellular localization of ZDS1:GFP and the increment in carotenoid content in transgenic tobacco plants overexpressing the carrot ZDS1, confirmed that ZDS1 codifies for a functional enzyme. Overall, these results lead us to propose that the main ζ-carotene desaturase activity in carrot is encoded by the ZDS1 gene and ZDS2 gene has a complementary and non essential role.


Assuntos
Carotenoides/metabolismo , Daucus carota/genética , Oxirredutases/genética , Proteínas de Plantas/genética , Daucus carota/crescimento & desenvolvimento , Daucus carota/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA