Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cell ; 158(3): 506-21, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25083866

RESUMO

Adaptation of the endoplasmic reticulum (ER) pathway for MHC class I (MHC-I) presentation in dendritic cells enables cross-presentation of peptides derived from phagocytosed microbes, infected cells, or tumor cells to CD8 T cells. How these peptides intersect with MHC-I molecules remains poorly understood. Here, we show that MHC-I selectively accumulate within phagosomes carrying microbial components, which engage Toll-like receptor (TLR) signaling. Although cross-presentation requires Sec22b-mediated phagosomal recruitment of the peptide loading complex from the ER-Golgi intermediate compartment (ERGIC), this step is independent of TLR signaling and does not deliver MHC-I. Instead, MHC-I are recruited from an endosomal recycling compartment (ERC), which is marked by Rab11a, VAMP3/cellubrevin, and VAMP8/endobrevin and holds large reserves of MHC-I. While Rab11a activity stocks ERC stores with MHC-I, MyD88-dependent TLR signals drive IκB-kinase (IKK)2-mediated phosphorylation of phagosome-associated SNAP23. Phospho-SNAP23 stabilizes SNARE complexes orchestrating ERC-phagosome fusion, enrichment of phagosomes with ERC-derived MHC-I, and subsequent cross-presentation during infection.


Assuntos
Apresentação de Antígeno , Endossomos/metabolismo , Fagossomos/metabolismo , Receptores Toll-Like/metabolismo , Animais , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Tecido Linfoide , Camundongos , Ovalbumina/imunologia , Fagocitose , Fosforilação , Transporte Proteico , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Receptores Toll-Like/imunologia , Proteínas rab de Ligação ao GTP/metabolismo
2.
Mol Cell ; 81(9): 2031-2040.e8, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33909989

RESUMO

Autophagy is a fundamental catabolic process that uses a unique post-translational modification, the conjugation of ATG8 protein to phosphatidylethanolamine (PE). ATG8 lipidation also occurs during non-canonical autophagy, a parallel pathway involving conjugation of ATG8 to single membranes (CASM) at endolysosomal compartments, with key functions in immunity, vision, and neurobiology. It is widely assumed that CASM involves the same conjugation of ATG8 to PE, but this has not been formally tested. Here, we discover that all ATG8s can also undergo alternative lipidation to phosphatidylserine (PS) during CASM, induced pharmacologically, by LC3-associated phagocytosis or influenza A virus infection, in mammalian cells. Importantly, ATG8-PS and ATG8-PE adducts are differentially delipidated by the ATG4 family and bear different cellular dynamics, indicating significant molecular distinctions. These results provide important insights into autophagy signaling, revealing an alternative form of the hallmark ATG8 lipidation event. Furthermore, ATG8-PS provides a specific "molecular signature" for the non-canonical autophagy pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagossomos/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Autofagia , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfatidilserinas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/genética , Autofagossomos/patologia , Família da Proteína 8 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Feminino , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Vírus da Influenza A/patogenicidade , Macrolídeos/farmacologia , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Monensin/farmacologia , Fagocitose , Fosfatidiletanolaminas/metabolismo , Células RAW 264.7 , Transdução de Sinais
3.
Mol Cell ; 77(2): 228-240.e7, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31733992

RESUMO

Since nuclear envelope breakdown occurs during mitosis in metazoan cells, it has been proposed that macroautophagy must be inhibited to maintain genome integrity. However, repression of macroautophagy during mitosis remains controversial and mechanistic detail limited to the suggestion that CDK1 phosphorylates VPS34. Here, we show that initiation of macroautophagy, measured by the translocation of the ULK complex to autophagic puncta, is repressed during mitosis, even when mTORC1 is inhibited. Indeed, mTORC1 is inactive during mitosis, reflecting its failure to localize to lysosomes due to CDK1-dependent RAPTOR phosphorylation. While mTORC1 normally represses autophagy via phosphorylation of ULK1, ATG13, ATG14, and TFEB, we show that the mitotic phosphorylation of these autophagy regulators, including at known repressive sites, is dependent on CDK1 but independent of mTOR. Thus, CDK1 substitutes for inhibited mTORC1 as the master regulator of macroautophagy during mitosis, uncoupling autophagy regulation from nutrient status to ensure repression of macroautophagy during mitosis.


Assuntos
Autofagia/fisiologia , Proteína Quinase CDC2/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mitose/fisiologia , Células A549 , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HCT116 , Células HEK293 , Células HT29 , Células HeLa , Humanos , Lisossomos/metabolismo , Masculino , Fosforilação/fisiologia , Transdução de Sinais/fisiologia
4.
EMBO J ; 42(19): e115210, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37638605

RESUMO

Maintaining the integrity of the endolysosomal system is of great importance for cellular homeostasis. Recent work published in The EMBO Journal and EMBO Reports reveals a novel role for the protein TECPR1 as a sensor for stressed membranes and regulator of lysosomal membrane repair.


Assuntos
Autofagia , Lisossomos , Lisossomos/metabolismo , Membranas Intracelulares/metabolismo
5.
EMBO J ; 37(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29317426

RESUMO

A hallmark of macroautophagy is the covalent lipidation of LC3 and insertion into the double-membrane phagophore, which is driven by the ATG16L1/ATG5-ATG12 complex. In contrast, non-canonical autophagy is a pathway through which LC3 is lipidated and inserted into single membranes, particularly endolysosomal vacuoles during cell engulfment events such as LC3-associated phagocytosis. Factors controlling the targeting of ATG16L1 to phagophores are dispensable for non-canonical autophagy, for which the mechanism of ATG16L1 recruitment is unknown. Here we show that the WD repeat-containing C-terminal domain (WD40 CTD) of ATG16L1 is essential for LC3 recruitment to endolysosomal membranes during non-canonical autophagy, but dispensable for canonical autophagy. Using this strategy to inhibit non-canonical autophagy specifically, we show a reduction of MHC class II antigen presentation in dendritic cells from mice lacking the WD40 CTD Further, we demonstrate activation of non-canonical autophagy dependent on the WD40 CTD during influenza A virus infection. This suggests dependence on WD40 CTD distinguishes between macroautophagy and non-canonical use of autophagy machinery.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Proteínas de Transporte/fisiologia , Membranas Intracelulares/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Repetições WD40 , Animais , Apresentação de Antígeno , Proteínas Relacionadas à Autofagia/genética , Células Cultivadas , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Células Dendríticas/metabolismo , Endossomos/metabolismo , Feminino , Humanos , Vírus da Influenza A/isolamento & purificação , Influenza Humana/metabolismo , Influenza Humana/patologia , Influenza Humana/virologia , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética
6.
J Cell Sci ; 131(23)2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30404831

RESUMO

Autophagic dysfunction and protein aggregation have been linked to several neurodegenerative disorders, but the exact mechanisms and causal connections are not clear and most previous work was done in neurons and not in microglial cells. Here, we report that exogenous fibrillary, but not monomeric, alpha-synuclein (AS, also known as SNCA) induces autophagy in microglial cells. We extensively studied the dynamics of this response using both live-cell imaging and correlative light-electron microscopy (CLEM), and found that it correlates with lysosomal damage and is characterised by the recruitment of the selective autophagy-associated proteins TANK-binding kinase 1 (TBK1) and optineurin (OPTN) to ubiquitylated lysosomes. In addition, we observed that LC3 (MAP1LC3B) recruitment to damaged lysosomes was dependent on TBK1 activity. In these fibrillar AS-treated cells, autophagy inhibition impairs mitochondrial function and leads to microglial cell death. Our results suggest that microglial autophagy is induced in response to lysosomal damage caused by persistent accumulation of AS fibrils. Importantly, triggering of the autophagic response appears to be an attempt at lysosomal quality control and not for engulfment of fibrillar AS.This article has an associated First Person interview with the first author of the paper.


Assuntos
Lisossomos/metabolismo , Microglia/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fator de Transcrição TFIIIA/genética , alfa-Sinucleína/metabolismo , Autofagia , Proteínas de Ciclo Celular , Humanos , Proteínas de Membrana Transportadoras , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fator de Transcrição TFIIIA/metabolismo
7.
J Cell Sci ; 130(1): 278-291, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27445312

RESUMO

The processes of life take place in multiple dimensions, but imaging these processes in even three dimensions is challenging. Here, we describe a workflow for 3D correlative light and electron microscopy (CLEM) of cell monolayers using fluorescence microscopy to identify and follow biological events, combined with serial blockface scanning electron microscopy to analyse the underlying ultrastructure. The workflow encompasses all steps from cell culture to sample processing, imaging strategy, and 3D image processing and analysis. We demonstrate successful application of the workflow to three studies, each aiming to better understand complex and dynamic biological processes, including bacterial and viral infections of cultured cells and formation of entotic cell-in-cell structures commonly observed in tumours. Our workflow revealed new insight into the replicative niche of Mycobacterium tuberculosis in primary human lymphatic endothelial cells, HIV-1 in human monocyte-derived macrophages, and the composition of the entotic vacuole. The broad application of this 3D CLEM technique will make it a useful addition to the correlative imaging toolbox for biomedical research.


Assuntos
Células Endoteliais/ultraestrutura , Imageamento Tridimensional , Macrófagos/ultraestrutura , Microscopia Eletrônica de Varredura/métodos , Sobrevivência Celular , Células Cultivadas , Células Endoteliais/microbiologia , Entose , HIV/ultraestrutura , Humanos , Espaço Intracelular/microbiologia , Macrófagos/virologia , Monócitos/citologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/ultraestrutura
8.
EMBO Rep ; 16(1): 87-96, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25394671

RESUMO

The human airway is lined with respiratory epithelial cells, which create a critical barrier through the formation of apical tight junctions. To investigate the molecular mechanisms underlying this process, an RNAi screen for guanine nucleotide exchange factors (GEFs) was performed in human bronchial epithelial cells (16HBE). We report that SOS1, acting through the Ras/MEK/ERK pathway, is essential for tight junction formation. Global microarray analysis identifies epithelial membrane protein 1 (EMP1), an integral tetraspan membrane protein, as a major transcriptional target. EMP1 is indispensable for tight junction formation and function in 16HBE cells and in a human airway basal progenitor-like cell line (BCi-NS1.1). Furthermore, EMP1 is significantly downregulated in human lung cancers. Together, these data identify important roles for SOS1/Ras and EMP1 in tight junction assembly during airway morphogenesis.


Assuntos
Brônquios/citologia , Proteínas de Neoplasias/metabolismo , Receptores de Superfície Celular/metabolismo , Proteína SOS1/metabolismo , Junções Íntimas/metabolismo , Proteínas ras/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Sistema de Sinalização das MAP Quinases , Proteínas de Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Superfície Celular/genética , Proteína SOS1/genética , Proteínas ras/genética
9.
J Cell Sci ; 124(Pt 9): 1477-85, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21486942

RESUMO

PECAM-1 (CD31) is a cellular adhesion and signaling receptor that is highly expressed at endothelial cell-cell junctions in confluent vascular beds. Previous studies have implicated PECAM-1 in the maintenance of vascular barrier integrity; however, the mechanisms behind PECAM-1-mediated barrier protection are still poorly understood. The goal of the present study, therefore, was to examine the pertinent biological properties of PECAM-1 (i.e. adhesion and/or signaling) that allow it to support barrier integrity. We found that, compared with PECAM-1-deficient endothelial cells, PECAM-1-expressing endothelial cell monolayers exhibit increased steady-state barrier function, as well as more rapid restoration of barrier integrity following thrombin-induced perturbation of the endothelial cell monolayer. The majority of PECAM-1-mediated barrier protection was found to be due to the ability of PECAM-1 to interact homophilically and become localized to cell-cell junctions, because a homophilic binding-crippled mutant form of PECAM-1 was unable to support efficient barrier function when re-expressed in cells. By contrast, cells expressing PECAM-1 variants lacking residues known to be involved in PECAM-1-mediated signal transduction exhibited normal to near-normal barrier integrity. Taken together, these studies suggest that PECAM-1-PECAM-1 homophilic interactions are more important than its signaling function for maintaining the integrity of endothelial cell junctions.


Assuntos
Células Endoteliais/metabolismo , Junções Intercelulares/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Adesão Celular/genética , Adesão Celular/fisiologia , Linhagem Celular , Humanos , Junções Intercelulares/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Ligação Proteica , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
10.
J Cell Biol ; 222(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37796195

RESUMO

Cells harness multiple pathways to maintain lysosome integrity, a central homeostatic process. Damaged lysosomes can be repaired or targeted for degradation by lysophagy, a selective autophagy process involving ATG8/LC3. Here, we describe a parallel ATG8/LC3 response to lysosome damage, mechanistically distinct from lysophagy. Using a comprehensive series of biochemical, pharmacological, and genetic approaches, we show that lysosome damage induces non-canonical autophagy and Conjugation of ATG8s to Single Membranes (CASM). Following damage, ATG8s are rapidly and directly conjugated onto lysosome membranes, independently of ATG13/WIPI2, lipidating to PS (and PE), a molecular hallmark of CASM. Lysosome damage drives V-ATPase V0-V1 association, direct recruitment of ATG16L1 via its WD40-domain/K490A, and is sensitive to Salmonella SopF. Lysosome damage-induced CASM is associated with formation of dynamic, LC3A-positive tubules, and promotes robust LC3A engagement with ATG2, a lipid transfer protein central to lysosome repair. Together, our data identify direct ATG8 conjugation as a rapid response to lysosome damage, with important links to lipid transfer and dynamics.


Assuntos
Família da Proteína 8 Relacionada à Autofagia , Autofagia , Lisossomos , Autofagia/genética , Lisossomos/genética , Lisossomos/metabolismo , Macroautofagia/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Salmonella , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo
11.
J Immunol ; 185(3): 1878-86, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20581150

RESUMO

Leukocyte migration across the endothelial lining is a critical step in the body's response to infection and inflammation. The homophilic interaction between endothelial PECAM and leukocyte PECAM is essential for this process. The molecular events that are triggered in the endothelial cell by PECAM engagement have been well characterized; however, the function of leukocyte PECAM remains to be elucidated. To study this, we first blocked leukocyte transmigration using anti-PECAM Ab and then specifically activated leukocyte PECAM. This was sufficient to overcome the block and promote transmigration, suggesting an active signaling role for leukocyte PECAM. Consistent with this, we found that ligation of leukocyte PECAM induces phosphorylation of two tyrosine residues on its cytoplasmic tail. By performing RNA interference-rescue experiments, we demonstrate that these phosphorylation events are indispensable for transendothelial migration. Finally, we show that leukocyte PECAM translocates to a detergent-resistant membrane (DRM) during transmigration. PECAM localized in DRMs displays reduced phosphorylation and does not support transmigration. Together, these data support a model whereby engagement of leukocyte PECAM induces its transient tyrosine phosphorylation and induction of downstream signals that drive transmigration. These signals are then downregulated following PECAM translocation to DRMs.


Assuntos
Movimento Celular , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Lipídeos de Membrana/metabolismo , Monócitos/metabolismo , Octoxinol/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , beta-Ciclodextrinas/metabolismo , Anticorpos Bloqueadores/metabolismo , Anticorpos Neutralizantes/metabolismo , Linhagem Celular , Movimento Celular/imunologia , Reagentes de Ligações Cruzadas/metabolismo , Detergentes/metabolismo , Regulação para Baixo/imunologia , Endotélio Vascular/imunologia , Humanos , Lipídeos de Membrana/fisiologia , Monócitos/citologia , Monócitos/imunologia , Octoxinol/química , Fosforilação , Molécula-1 de Adesão Celular Endotelial a Plaquetas/imunologia , Transporte Proteico/imunologia , Transdução de Sinais/imunologia , Tirosina/metabolismo , Células U937
12.
Sci Adv ; 8(43): eabo1274, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36288315

RESUMO

Autophagy is a fundamental catabolic process coordinated by a network of autophagy-related (ATG) proteins. These ATG proteins also perform an important parallel role in "noncanonical" autophagy, a lysosome-associated signaling pathway with key functions in immunity, inflammation, cancer, and neurodegeneration. While the noncanonical autophagy pathway shares the common ATG machinery, it bears key mechanistic and functional distinctions, and is characterized by conjugation of ATG8 to single membranes (CASM). Here, we review the diverse, and still expanding, collection of stimuli and processes now known to harness the noncanonical autophagy pathway, including engulfment processes, drug treatments, TRPML1 and STING signaling, viral infection, and other pathogenic factors. We discuss the multiple associated routes to CASM and assess their shared and distinctive molecular features. By integrating these findings, we propose an updated and unifying mechanism for noncanonical autophagy, centered on ATG16L1 and V-ATPase.

13.
Autophagy ; 18(3): 707-708, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35258397

RESUMO

Conjugation of the Atg8 (autophagy related 8) family of ubiquitin-like proteins to phospholipids of the phagophore is a hallmark of macroautophagy/autophagy. Consequently, Atg8 family members, especially LC3B, are commonly used as a marker of autophagosomes. However, the Atg8 family of proteins are not found solely attached to double-membrane autophagosomes. In non-canonical Atg8-family protein lipidation they become conjugated to single membranes. We have shown that this process is triggered by recruitment of ATG16L1 by the vacuolar-type H+-translocating ATPase (V-ATPase) proton pump, suggesting a role for pH sensing in recruitment of Atg8-family proteins to single membranes.


Assuntos
Família da Proteína 8 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Autofagia , Proteínas Associadas aos Microtúbulos , ATPases Translocadoras de Prótons , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , ATPases Translocadoras de Prótons/metabolismo
14.
J Cell Biol ; 221(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35511089

RESUMO

Non-canonical autophagy is a key cellular pathway in immunity, cancer, and neurodegeneration, characterized by conjugation of ATG8 to endolysosomal single membranes (CASM). CASM is activated by engulfment (endocytosis, phagocytosis), agonists (STING, TRPML1), and infection (influenza), dependent on K490 in the ATG16L1 WD40-domain. However, factors associated with non-canonical ATG16L1 recruitment and CASM induction remain unknown. Here, using pharmacological inhibitors, we investigate a role for V-ATPase during non-canonical autophagy. We report that increased V0-V1 engagement is associated with, and sufficient for, CASM activation. Upon V0-V1 binding, V-ATPase recruits ATG16L1, via K490, during LC3-associated phagocytosis (LAP), STING- and drug-induced CASM, indicating a common mechanism. Furthermore, during LAP, key molecular players, including NADPH oxidase/ROS, converge on V-ATPase. Finally, we show that LAP is sensitive to Salmonella SopF, which disrupts the V-ATPase-ATG16L1 axis and provide evidence that CASM contributes to the Salmonella host response. Together, these data identify V-ATPase as a universal regulator of CASM and indicate that SopF evolved in part to evade non-canonical autophagy.


Assuntos
Proteínas Relacionadas à Autofagia , Autofagia , Proteínas Associadas aos Microtúbulos , Fagocitose , ATPases Vacuolares Próton-Translocadoras , Proteínas Relacionadas à Autofagia/metabolismo , Linhagem Celular , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
15.
J Immunol ; 183(4): 2330-6, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19620297

RESUMO

Sphingosine 1-phosphate (S1P) is a bioactive phospholipid that is released by platelets and endothelial cells and has been implicated in diverse biological functions. We hypothesized that S1P may influence immune complex-mediated polymorphonuclear neutrophil activation. Using flow cytometry and fluorescence spectrometry, we found that exogenous addition of S1P led to an enhanced polymorphonuclear neutrophil Fcgamma receptor-mediated rise in intracellular Ca(2+) and reactive oxygen species generation in a pertussis toxin-independent manner, while having only a small effect by itself. Thus, S1P amplifies a positive feedback loop where Fcgamma receptor-mediated rises in Ca(2+) and reactive oxygen species are interdependent, with reactive oxygen species acting to increase tyrosine phosphorylation and activity of upstream signaling intermediates. S1P augmentation of Fcgamma receptor signaling translates to downstream functional consequences, including shape change and recruitment to endothelial surfaces coated with suboptimal levels of immune complexes. Taken together, S1P from activated platelets or endothelial cells may serve to amplify leukocyte recruitment and tissue injury at sites of immune complex deposition in vasculitis.


Assuntos
Adjuvantes Imunológicos/sangue , Quimiotaxia de Leucócito/imunologia , Lisofosfolipídeos/sangue , Ativação de Neutrófilo/imunologia , Infiltração de Neutrófilos/imunologia , Receptores de IgG/sangue , Esfingosina/análogos & derivados , Regulação para Cima/imunologia , Adjuvantes Imunológicos/metabolismo , Complexo Antígeno-Anticorpo/sangue , Complexo Antígeno-Anticorpo/fisiologia , Sinalização do Cálcio/imunologia , Adesão Celular/imunologia , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Células HL-60 , Humanos , Mediadores da Inflamação/sangue , Mediadores da Inflamação/fisiologia , Lisofosfolipídeos/metabolismo , Microcirculação/imunologia , Neutrófilos/enzimologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Receptores de IgG/fisiologia , Esfingosina/sangue , Esfingosina/metabolismo
16.
Autophagy ; 17(9): 2642-2644, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34251968

RESUMO

Atg8-family protein lipidation is the most commonly used marker for monitoring autophagy. During macroautophagy, Atg8-family proteins are specifically conjugated to phosphatidylethanolamine (PE) in forming, double-membrane autophagosomes. A distinct, non-canonical autophagy pathway also operates, characterized by the Conjugation of ATG8s to endolysosomal Single Membranes (CASM). In our new study, we show that CASM is associated with the alternative conjugation of Atg8-family proteins to phosphatidylserine (PS), and PE, in response to various cellular stimuli. We also discover differences in the regulation of conjugation to PE and PS by ATG4s, and altered dynamics between the two species. The identification of alternative Atg8-family protein PS lipidation opens up exciting new questions on the roles, regulation and biology of Atg8-family proteins during non-canonical autophagy.


Assuntos
Autofagia , Fosfatidilserinas , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
17.
Trends Cell Biol ; 31(2): 95-107, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33272830

RESUMO

Autophagy and cap-dependent mRNA translation are tightly regulated by the mechanistic target of rapamycin complex 1 (mTORC1) signalling complex in response to nutrient availability. However, the regulation of these processes, and mTORC1 itself, is different during mitosis, and this has remained an area of significant controversy; for example, studies have argued that autophagy is either repressed or highly active during mitosis. Recent studies have shown that autophagy initiation is repressed, and cap-dependent mRNA translation is maintained during mitosis despite mTORC1 activity being repressed. This is achieved in large part by a switch from mTORC1- to cyclin-dependent kinase 1 (CDK1)-mediated regulation. Here, we review the history and recent advances and seek to present a unifying model to inform the future study of autophagy and mTORC1 during mitosis.


Assuntos
Autofagia/fisiologia , Proteína Quinase CDC2/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mitose/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Fosforilação/fisiologia , Biossíntese de Proteínas , Transdução de Sinais/fisiologia
18.
Cell Rep ; 37(4): 109899, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34706226

RESUMO

Although commonly associated with autophagosomes, LC3 can also be recruited to membranes by covalent lipidation in a variety of non-canonical contexts. These include responses to ionophores such as the M2 proton channel of influenza A virus. We report a subtractive CRISPR screen that identifies factors required for non-canonical LC3 lipidation. As well as the enzyme complexes directly responsible for LC3 lipidation in all contexts, we show the RALGAP complex is important for M2-induced, but not ionophore drug-induced, LC3 lipidation. In contrast, ATG4D is responsible for LC3 recycling in M2-induced and basal LC3 lipidation. Identification of a vacuolar ATPase subunit in the screen suggests a common mechanism for non-canonical LC3 recruitment. Influenza-induced and ionophore drug-induced LC3 lipidation lead to association of the vacuolar ATPase and ATG16L1 and can be antagonized by Salmonella SopF. LC3 recruitment to erroneously neutral compartments may therefore represent a response to damage caused by diverse invasive pathogens.


Assuntos
Proteínas Relacionadas à Autofagia , Lipoilação , Proteínas Associadas aos Microtúbulos , Autofagossomos/genética , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Sistemas CRISPR-Cas , Células HCT116 , Células HEK293 , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Salmonella/genética , Salmonella/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Proteínas Viroporinas/genética , Proteínas Viroporinas/metabolismo
19.
Sci Adv ; 7(40): eabj2485, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34597140

RESUMO

Adaptive changes in lysosomal capacity are driven by the transcription factors TFEB and TFE3 in response to increased autophagic flux and endolysosomal stress, yet the molecular details of their activation are unclear. LC3 and GABARAP members of the ATG8 protein family are required for selective autophagy and sensing perturbation within the endolysosomal system. Here, we show that during the conjugation of ATG8 to single membranes (CASM), Parkin-dependent mitophagy, and Salmonella-induced xenophagy, the membrane conjugation of GABARAP, but not LC3, is required for activation of TFEB/TFE3 to control lysosomal capacity. GABARAP directly binds to a previously unidentified LC3-interacting motif (LIR) in the FLCN/FNIP tumor suppressor complex and mediates sequestration to GABARAP-conjugated membrane compartments. This disrupts FLCN/FNIP GAP function toward RagC/D, resulting in impaired substrate-specific mTOR-dependent phosphorylation of TFEB. Thus, the GABARAP-FLCN/FNIP-TFEB axis serves as a molecular sensor that coordinates lysosomal homeostasis with perturbations and cargo flux within the autophagy-lysosomal network.

20.
J Exp Med ; 198(9): 1323-35, 2003 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-14597735

RESUMO

L-selectin mediates rolling of lymphocytes in high endothelial venules (HEVs) of peripheral lymph nodes (PLNs). Cross-linking of L-selectin causes proteolytic shedding of its ectodomain, the physiological significance of which is unknown. To determine whether L-selectin shedding regulates lymphocyte migration, a mutant form that resists shedding (LdDeltaP-selectin) was engineered. Transgenic mice expressing either LDeltaP or wild-type (WT) L-selectin on T cells were crossed with L-selectin knockout (KO) mice. The cellularity and subset composition of secondary lymphoid organs did not differ between LDeltaP and WT mice, however, they were different from C57BL/6. Plasma levels of soluble L-selectin in LDeltaP mice were reduced to <5% of WT and C57BL/6 mice. The rolling properties of T lymphocytes from LDeltaP and WT mice on immobilized L-selectin ligands were similar. Furthermore, similar numbers of LDeltaP and WT T lymphocytes were recruited from the bloodstream into PLNs in mice, although LDeltaP T cells transmigrated HEVs more slowly. WT, but not LDeltaP-selectin, underwent rapid, metalloproteinase-dependent shedding after TCR engagement, and LDeltaP T cells retained the capacity to enter PLNs from the bloodstream. These results suggest that the ability to shed L-selectin is not required for T cell recirculation and homing to PLNs. However, L-selectin shedding from antigen-activated T cells prevents reentry into PLNs.


Assuntos
Antígenos/imunologia , Movimento Celular/imunologia , Selectina L/imunologia , Linfócitos T/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Selectina L/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA