Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 7(6): e1002109, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21698137

RESUMO

One of the central goals of developmental neurobiology is to describe and understand the multi-tiered molecular events that control the progression of a fertilized egg to a terminally differentiated neuron. In the nematode Caenorhabditis elegans, the progression from egg to terminally differentiated neuron has been visually traced by lineage analysis. For example, the two gustatory neurons ASEL and ASER, a bilaterally symmetric neuron pair that is functionally lateralized, are generated from a fertilized egg through an invariant sequence of 11 cellular cleavages that occur stereotypically along specific cleavage planes. Molecular events that occur along this developmental pathway are only superficially understood. We take here an unbiased, genome-wide approach to identify genes that may act at any stage to ensure the correct differentiation of ASEL. Screening a genome-wide RNAi library that knocks-down 18,179 genes (94% of the genome), we identified 245 genes that affect the development of the ASEL neuron, such that the neuron is either not generated, its fate is converted to that of another cell, or cells from other lineage branches now adopt ASEL fate. We analyze in detail two factors that we identify from this screen: (1) the proneural gene hlh-14, which we find to be bilaterally expressed in the ASEL/R lineages despite their asymmetric lineage origins and which we find is required to generate neurons from several lineage branches including the ASE neurons, and (2) the COMPASS histone methyltransferase complex, which we find to be a critical embryonic inducer of ASEL/R asymmetry, acting upstream of the previously identified miRNA lsy-6. Our study represents the first comprehensive, genome-wide analysis of a single neuronal cell fate decision. The results of this analysis provide a starting point for future studies that will eventually lead to a more complete understanding of how individual neuronal cell types are generated from a single-cell embryo.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Estudo de Associação Genômica Ampla/métodos , Ensaios de Triagem em Larga Escala , Interferência de RNA , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Linhagem da Célula/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , MicroRNAs/genética , Mutação/genética , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Reprodutibilidade dos Testes
2.
Development ; 137(11): 1799-805, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20431118

RESUMO

Transcriptional co-repressors of the Groucho/TLE family are important regulators of development in many species. A subset of Groucho/TLE family members that lack the C-terminal WD40 domains have been proposed to act as dominant-negative regulators of Groucho/TLE proteins, yet such a role has not been conclusively proven. Through a mutant screen for genes controlling a left/right asymmetric cell fate decision in the nervous system of the nematode C. elegans, we have retrieved loss-of-function alleles in two distinct loci that display identical phenotypes in neuronal fate specification and in other developmental contexts. Using the novel technology of whole-genome sequencing, we find that these loci encode the C. elegans ortholog of Groucho, UNC-37, and, surprisingly, a short Groucho-like protein, LSY-22, that is similar to truncated Groucho proteins in other species. Besides their phenotypic similarities, unc-37 and lsy-22 show genetic interactions and UNC-37 and LSY-22 proteins also physically bind to each other in vivo. Our findings suggest that rather than acting as negative regulators of Groucho, small Groucho-like proteins may promote Groucho function. We propose that Groucho-mediated gene regulatory events involve heteromeric complexes of distinct Groucho-like proteins.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Epistasia Genética , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Neurogênese/genética , Neurogênese/fisiologia , Proteínas Repressoras/química , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Técnicas do Sistema de Duplo-Híbrido
3.
Genetics ; 176(4): 2109-30, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17717195

RESUMO

We describe here the results of genetic screens for Caenorhabditis elegans mutants in which a single neuronal fate decision is inappropriately executed. In wild-type animals, the two morphologically bilaterally symmetric gustatory neurons ASE left (ASEL) and ASE right (ASER) undergo a left/right asymmetric diversification in cell fate, manifested by the differential expression of a class of putative chemoreceptors and neuropeptides. Using single cell-specific gfp reporters and screening through a total of almost 120,000 haploid genomes, we isolated 161 mutants that define at least six different classes of mutant phenotypes in which ASEL/R fate is disrupted. Each mutant phenotypic class encompasses one to nine different complementation groups. Besides many alleles of 10 previously described genes, we have identified at least 16 novel "lsy" genes ("laterally symmetric"). Among mutations in known genes, we retrieved four alleles of the miRNA lsy-6 and a gain-of-function mutation in the 3'-UTR of a target of lsy-6, the cog-1 homeobox gene. Using newly found temperature-sensitive alleles of cog-1, we determined that a bistable feedback loop controlling ASEL vs. ASER fate, of which cog-1 is a component, is only transiently required to initiate but not to maintain ASEL and ASER fate. Taken together, our mutant screens identified a broad catalog of genes whose molecular characterization is expected to provide more insight into the complex genetic architecture of a left/right asymmetric neuronal cell fate decision.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/genética , Genes de Helmintos , Alelos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Padronização Corporal/genética , Caenorhabditis elegans/citologia , Morte Celular/genética , Mapeamento Cromossômico , Primers do DNA/genética , DNA de Helmintos/genética , Genes Homeobox , Genes Reporter , Canais Iônicos/genética , Dados de Sequência Molecular , Mutação , Neurônios/citologia , Fenótipo , Homologia de Sequência do Ácido Nucleico
4.
Development ; 136(1): 147-60, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19060335

RESUMO

Anatomically and functionally defined neuron types are sometimes further classified into individual subtypes based on unique functional or molecular properties. To better understand how developmental programs controlling neuron type specification are mechanistically linked to programs controlling neuronal subtype specification, we have analyzed a neuronal subtype specification program that occurs across the left/right axis in the nervous system of the nematode C. elegans. A terminal selector transcription factor, CHE-1, is required for the specification of the ASE neuron class, and a gene regulatory feedback loop of transcription factors and miRNAs is required to diversify the two ASE neurons into an asymmetric left and right subtype (ASEL and ASER). However, the link between the CHE-1-dependent ASE neuron class specification and the ensuing left-right subtype specification program is poorly understood. We show here that CHE-1 has genetically separable functions in controlling bilaterally symmetric ASE neuron class specification and the ensuing left-right subtype specification program. Both neuron class specification and asymmetric subclass specification depend on CHE-1-binding sites (;ASE motifs') in symmetrically and asymmetrically expressed target genes, but in the case of asymmetrically expressed target genes, the activity of the ASE motif is modulated through a diverse set of additional cis-regulatory elements. Depending on the target gene, these cis-regulatory elements either promote or inhibit the activity of CHE-1. The activity of these L/R asymmetric cis-regulatory elements is indirectly controlled by che-1 itself, revealing a feed-forward loop configuration in which che-1 restricts its own activity. Relative binding affinity of CHE-1 to ASE motifs also depends on whether a gene is expressed bilaterally or in a left/right asymmetric manner. Our analysis provides insights into the molecular mechanisms of neuronal subtype specification, demonstrating that the activity of a neuron type-specific selector gene is modulated by a variety of distinct means to diversify individual neuron classes into specific subclasses. It also suggests that feed-forward loop motifs may be a prominent feature of neuronal diversification events.


Assuntos
Padronização Corporal/genética , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Linhagem da Célula , Neurônios/citologia , Sequências Reguladoras de Ácido Nucleico/genética , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes de Helmintos , Proteínas de Homeodomínio/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Neurônios/metabolismo , Ligação Proteica , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA