Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Anim Genet ; 54(3): 239-253, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36737525

RESUMO

We used genome-wide SNP data from 18 local cattle breeds from six countries of the Alpine region to characterize population structure and identify genomic regions underlying positive selection. The geographically close breeds Evolèner, Eringer, Valdostana Pezzata Nera, and Valdostana Castana were found to differ from all other Alpine breeds. In addition, three breeds, Simmental, and Original Braunvieh from Switzerland and Pinzgauer from Austria built three separate clusters. Of the 18 breeds studied, the intra-alpine Swiss breed Evolèner had the highest average inbreeding based on runs of homozygosity (FROH ) and the highest average genomic relationship within the breed. In contrast, Slovenian Cika cattle had the lowest average genomic inbreeding and the lowest average genomic relationship within the breed. We found selection signatures on chromosome 6 near known genes such as KIT and LCORL explaining variation in coat color and body size in cattle. The most prominent selection signatures were similar regardless of marker density and the breeds in the data set. In addition, using available high-density SNP data from 14 of the breeds we identified 47 genome regions as ROH islands. The proportion of homozygous animals was higher in all studied animals of local breeds than in Holstein and Brown Swiss cattle, the two most important commercial breeds in the Alpine region. We report ROH islands near genes related to thermoregulation, coat color, production, and stature. The results of this study serve as a basis for the search for causal variants underlying adaptation to the alpine environment and other specific characteristics selected during the evolution of local Alpine cattle breeds.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Bovinos , Animais , Genótipo , Endogamia , Homozigoto , Genômica/métodos
2.
J Dairy Sci ; 106(12): 8969-8978, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641348

RESUMO

Shortening of the mandible (brachygnathia inferior) is a congenital, often inherited and variably expressed craniofacial anomaly in domestic animals including cattle. Brachygnathia inferior can lead to poorer animal health and welfare and reduced growth, which ultimately affects productivity. Within the course of the systematic conformation scoring, cases with a frequency of about 0.1% were observed in the Brown Swiss cattle population of Switzerland. In contrast, this anomaly is almost unknown in the Original Braunvieh population, representing the breed of origin. Because none of the individually examined 46 living offspring of our study cohort of 145 affected cows showed the trait, we can most likely exclude a monogenic-dominant mode of inheritance. We hypothesized that either a monogenic recessive or a complex mode of inheritance was underlying. Through a genome-wide association study of 145 cases and 509 controls with imputed 624k SNP data, we identified a 4.5 Mb genomic region on bovine chromosome 5 significantly associated with this anomaly. This locus was fine-mapped using whole-genome sequencing data. A run of homozygosity analysis revealed a critical interval of 430 kb. A breed specific frameshift duplication in WNT10B (rs525007739; c.910dupC; p.Arg304ProfsTer14) located in this genomic region was found to be associated with a 21.5-fold increased risk of brachygnathia inferior in homozygous carriers. Consequently, we present for the first time a genetic locus associated with this well-known anomaly in cattle, which allows DNA-based selection of Brown Swiss animals at decreased risk for mandibular shortening. In addition, this study represents the first large animal model of a WNT10B-related inherited developmental disorder in a mammalian species.


Assuntos
Estudo de Associação Genômica Ampla , Genoma , Animais , Bovinos , Feminino , Estudo de Associação Genômica Ampla/veterinária , Genótipo , Homozigoto , Fenótipo , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas , Proteínas Wnt
3.
Genet Sel Evol ; 54(1): 6, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073837

RESUMO

BACKGROUND: The domestication of goat (Capra hircus) started 11,000 years ago in the fertile crescent. Breed formation in the nineteenth century, establishment of herd books, and selection for specific traits resulted in 10 modern goat breeds in Switzerland. We analyzed whole-genome sequencing (WGS) data from 217 modern goats and nine wild Bezoar goats (Capra aegagrus). After quality control, 27,728,288 biallelic single nucleotide variants (SNVs) were used for the identification of runs of homozygosity (ROH) and the detection of ROH islands. RESULTS: Across the 226 caprine genomes from 11 populations, we detected 344 ROH islands that harbor 1220 annotated genes. We compared the ROH islands between the modern breeds and the Bezoar goats. As a proof of principle, we confirmed a signature of selection, which contains the ASIP gene that controls several breed-specific coat color patterns. In two other ROH islands, we identified two missense variants, STC1:p.Lys139Arg and TSHR:p.Ala239Thr, which might represent causative functional variants for domestication signatures. CONCLUSIONS: We have shown that the information from ROH islands using WGS data is suitable for the analysis of signatures of selection and allowed the detection of protein coding variants that may have conferred beneficial phenotypes during goat domestication. We hypothesize that the TSHR:p.Ala239Thr variant may have played a role in changing the seasonality of reproduction in modern domesticated goats. The exact functional significance of the STC1:p.Lys139Arg variant remains unclear and requires further investigation. Nonetheless, STC1 might represent a new domestication gene affecting relevant traits such as body size and/or milk yield in goats.


Assuntos
Domesticação , Cabras , Animais , Genoma , Cabras/genética , Homozigoto , Polimorfismo de Nucleotídeo Único , Seleção Genética , Suíça
4.
Anim Genet ; 53(3): 427-435, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35451516

RESUMO

Sequence variations in the melanocortin-1 receptor (MC1R) gene are associated with melanism in different animal species. Six functionally relevant alleles have been described in cattle to date. In a hypothesis-free approach we performed a genome-wide allelic association study with black, red and wild-coloured cattle of three Alpine cattle breeds (Eringer, Evolèner and Valdostana), revealing a single significant association signal close to the MC1R gene. We searched for candidate causative variants by sequencing the entire coding sequence and identified two novel protein-changing variants. We propose designating the mutant alleles at MC1R:c.424C>T as ev1 and at MC1R:c.263G>A as ev2 . Both affect conserved amino acid residues in functionally important transmembrane domains (p.Arg142Cys and p.Ser88Asn). Both alleles segregate predominantly in the Swiss Evolèner breed. They occur in other European cattle breeds such as Abondance and Rotes Höhenvieh as well. We observed almost perfect association between the MC1R genotypes and the coat colour phenotype in a cohort of 513 black, red and wild-coloured cattle. Animals carrying two copies of MC1R loss-of-function alleles or that were compound heterozygous for e, ev1 , or ev2 have a red to dark red (chestnut-like red) coat colour. These findings expand the spectrum of causal MC1R variants causing recessive red in cattle.


Assuntos
Cor de Cabelo , Receptor Tipo 1 de Melanocortina , Alelos , Animais , Cruzamento , Bovinos/genética , Genótipo , Cor de Cabelo/genética , Humanos , Fenótipo , Receptor Tipo 1 de Melanocortina/genética
5.
PLoS Genet ; 15(12): e1008536, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31841508

RESUMO

Domestication and human selection have formed diverse goat breeds with characteristic phenotypes. This process correlated with the fixation of causative genetic variants controlling breed-specific traits within regions of reduced genetic diversity, so called selection signatures or selective sweeps. Using whole genome sequencing of DNA pools (pool-seq) from 20 genetically diverse modern goat breeds and bezoars, we identified 2,239 putative selection signatures. In two Pakistani goat breeds, Pak Angora and Barbari, we found selection signatures in a region harboring KIT, a gene involved in melanoblast development, migration, and survival. The search for candidate causative variants responsible for these selective sweeps revealed two different copy number variants (CNVs) downstream of KIT that were exclusively present in white Pak Angora and white-spotted Barbari goats. Several Swiss goat breeds selected for specific coat colors showed selection signatures at the ASIP locus encoding the agouti signaling protein. Analysis of these selective sweeps revealed four different CNVs associated with the white or tan (AWt), Swiss markings (Asm), badgerface (Ab), and the newly proposed peacock (Apc) allele. RNA-seq analyses on skin samples from goats with the different CNV alleles suggest that the identified structural variants lead to an altered expression of ASIP between eumelanistic and pheomelanistic body areas. Our study yields novel insights into the genetic control of pigmentation by identifying six functionally relevant CNVs. It illustrates how structural changes of the genome have contributed to phenotypic evolution in domestic goats.


Assuntos
Cruzamento/métodos , Variações do Número de Cópias de DNA , Cabras/crescimento & desenvolvimento , Sequenciamento Completo do Genoma/veterinária , Animais , Animais Domésticos/genética , Animais Domésticos/crescimento & desenvolvimento , Evolução Biológica , Cor , Feminino , Cabras/genética , Fenótipo , Locos de Características Quantitativas , Análise de Sequência de RNA
6.
J Hered ; 112(5): 452-457, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34050662

RESUMO

The Valais Blackneck goat is a Swiss goat breed with a characteristic coat color phenotype. Before the revision of the breed standard in 1938, 4 different color varieties of Valais goats were known. Besides Blackneck animals resembling the modern breed standard, the brown and white Copperneck goat, the white Capra Sempione, and the greyish Grüenochte comprised the historic Valais goats. The brown pigmentation of Copperneck goats had previously been traced back to an introgression of a mutant TYRP1 allele from Toggenburg goats. In the present study, we identified additional introgression events of distinct ASIP alleles causing the remaining 2 rare coat color patterns within the Valais Blackneck goat breed. We identified the introgression of the AWt allele from Appenzell or Saanen goats in white Capra Sempione goats. Similarly, introgression of the Apc allele from Peacock goats resulted in the greyish Grüenochte phenotype. These results demonstrate past hybridization events between breeds that are separated today. A perfect genotype-phenotype association in 393 Valais goats supported the causality of the genotyped variants for the different coat color phenotypes. Our study gives insights into the introgression of functionally relevant copy number variant (CNV) alleles controlling pigmentation between goat breeds with strikingly different coat color patterns.


Assuntos
Variações do Número de Cópias de DNA , Cabras , Alelos , Animais , Genótipo , Cabras/genética , Fenótipo
7.
BMC Vet Res ; 14(1): 68, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29506524

RESUMO

BACKGROUND: Crossed beaks have been reported to occur in Appenzeller Barthuhn, a local Swiss chicken breed. The assumed causes for this beak deformity which are also seen in other bird species including domestic chickens, range from environmental influences to genetic factors. The aim of this project was to characterize the prevalence, the phenotype, and the underlying genetics of crossed beaks in Appenzeller Barthuhn chickens. RESULTS: The estimated prevalence of 7% crossed beaks in Appenzeller Barthuhn was significantly higher compared to two other local Swiss chicken breeds. A breeding trial showed significantly higher prevalence of offspring with deformed beaks from mating of affected parents compared to mating of non-affected parents. Examination of 77 Appenzeller Barthuhn chickens with crossed beaks showed a variable phenotype presentation. The deviation of the beak from the median plane through the head ranged from 1° to 61°. In more than 60% of the cases, the upper and lower beak were bent in the same direction, whereas the remaining cases showed different forms of crossed beaks. Computed tomographic scans and bone maceration of the head of two chickens with crossed beaks revealed that the maxilla and the mandibula were affected, while other parts of the skull appeared to be normal. The gene LOC426217, a member of the keratin family, was postulated as a candidate gene for beak deformity in domestic chickens. Sequencing of the coding region revealed two significantly associated synonymous variants for crossed beaks in Appenzeller Barthuhn chickens. A genome-wide association study and a comparative analysis of runs of homozygosity based on high-density SNP array genotyping data of 53 cases and 102 controls showed no evidence of association. CONCLUSIONS: The findings suggest a hereditary cause of crossed beaks in Appenzeller Barthuhn chickens. However, the observed variation in the phenotype, together with the inconclusive molecular genetic results indicates the need for additional research to unravel the genetic architecture of this beak deformity.


Assuntos
Bico/anormalidades , Galinhas/anormalidades , Animais , Feminino , Estudos de Associação Genética/veterinária , Queratinas/genética , Masculino , Polimorfismo de Nucleotídeo Único/genética , Prevalência , Especificidade da Espécie , Suíça/epidemiologia
8.
J Dairy Sci ; 101(2): 1292-1296, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29153527

RESUMO

The accuracy of genomic prediction determines response to selection. It has been hypothesized that accuracy of genomic breeding values can be increased by a higher density of variants. We used imputed whole-genome sequence data and various single nucleotide polymorphism (SNP) selection criteria to estimate genomic breeding values in Brown Swiss cattle. The extreme scenarios were 50K SNP chip data and whole-genome sequence data with intermediate scenarios using linkage disequilibrium-pruned whole-genome sequence variants, only variants predicted to be missense, or the top 50K variants from genome-wide association studies. We estimated genomic breeding values for 3 traits (somatic cell score, nonreturn rate in heifers, and stature) and found differences in accuracy levels between traits. However, among different SNP sets, accuracy was very similar. In our analyses, sequence data led to a marginal increase in accuracy for 1 trait and was lower than 50K for the other traits. We concluded that the inclusion of imputed whole-genome sequence data does not lead to increased accuracy of genomic prediction with the methods.


Assuntos
Bovinos/genética , Estudo de Associação Genômica Ampla/veterinária , Genoma , Polimorfismo de Nucleotídeo Único , Animais , Cruzamento , Feminino , Genômica/métodos , Genótipo , Desequilíbrio de Ligação , Análise de Sequência com Séries de Oligonucleotídeos/veterinária
9.
BMC Genomics ; 18(1): 999, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29284405

RESUMO

BACKGROUND: Within the last few years a large amount of genomic information has become available in cattle. Densities of genomic information vary from a few thousand variants up to whole genome sequence information. In order to combine genomic information from different sources and infer genotypes for a common set of variants, genotype imputation is required. RESULTS: In this study we evaluated the accuracy of imputation from high density chips to whole genome sequence data in Brown Swiss cattle. Using four popular imputation programs (Beagle, FImpute, Impute2, Minimac) and various compositions of reference panels, the accuracy of the imputed sequence variant genotypes was high and differences between the programs and scenarios were small. We imputed sequence variant genotypes for more than 1600 Brown Swiss bulls and performed genome-wide association studies for milk fat percentage at two stages of lactation. We found one and three quantitative trait loci for early and late lactation fat content, respectively. Known causal variants that were imputed from the sequenced reference panel were among the most significantly associated variants of the genome-wide association study. CONCLUSIONS: Our study demonstrates that whole-genome sequence information can be imputed at high accuracy in cattle populations. Using imputed sequence variant genotypes in genome-wide association studies may facilitate causal variant detection.


Assuntos
Bovinos/genética , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Locos de Características Quantitativas , Análise de Sequência de DNA , Animais , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único
10.
BMC Genomics ; 18(1): 910, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29178833

RESUMO

BACKGROUND: The detection of quantitative trait loci has accelerated with recent developments in genomics. The introduction of genomic selection in combination with sequencing efforts has made a large amount of genotypic data available. Functional traits such as fertility and calving traits have been included in routine genomic estimation of breeding values making large quantities of phenotypic data available for these traits. This data was used to investigate the genetics underlying fertility and calving traits and to identify potentially causative genomic regions and variants. We performed genome-wide association studies for 13 functional traits related to female fertility as well as for direct and maternal calving ease based on imputed whole-genome sequences. Deregressed breeding values from ~1000-5000 bulls per trait were used to test for associations with approximately 10 million imputed sequence SNPs. RESULTS: We identified a QTL on BTA17 associated with non-return rate at 56 days and with interval from first to last insemination. We found two significantly associated non-synonymous SNPs within this QTL region. Two more QTL for fertility traits were identified on BTA25 and 29. A single QTL was identified for maternal calving traits on BTA13 whereas three QTL on BTA19, 21 and 25 were identified for direct calving traits. The QTL on BTA19 co-localizes with the reported BH2 haplotype. The QTL on BTA25 is concordant for fertility and calving traits and co-localizes with a QTL previously reported to influence stature and related traits in Brown Swiss dairy cattle. CONCLUSION: The detection of QTL and their causative variants remains challenging. Combining comprehensive phenotypic data with imputed whole genome sequences seems promising. We present a QTL on BTA17 for female fertility in dairy cattle with two significantly associated non-synonymous SNPs, along with five additional QTL for fertility traits and calving traits. For all of these we fine mapped the regions and suggest candidate genes and candidate variants.


Assuntos
Bovinos/genética , Fertilidade/genética , Locos de Características Quantitativas , Animais , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Genômica , Masculino , Gravidez , Natimorto/genética
11.
Genet Sel Evol ; 49(1): 83, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29115934

RESUMO

BACKGROUND: Domestication, breed formation and intensive selection have resulted in divergent cattle breeds that likely exhibit their own genomic signatures. In this study, we used genotypes from 27,612 autosomal single nucleotide polymorphisms to characterize population structure based on 9214 sires representing nine Swiss dairy cattle populations: Brown Swiss (BS), Braunvieh (BV), Original Braunvieh (OB), Holstein (HO), Red Holstein (RH), Swiss Fleckvieh (SF), Simmental (SI), Eringer (ER) and Evolèner (EV). Genomic inbreeding (F ROH) and signatures of selection were determined by calculating runs of homozygosity (ROH). The results build the basis for a better understanding of the genetic development of Swiss dairy cattle populations and highlight differences between the original populations (i.e. OB, SI, ER and EV) and those that have become more popular in Switzerland as currently reflected by their larger populations (i.e. BS, BV, HO, RH and SF). RESULTS: The levels of genetic diversity were highest and lowest in the SF and BS breeds, respectively. Based on F ST values, we conclude that, among all pairwise comparisons, BS and HO (0.156) differ more than the other pairs of populations. The original Swiss cattle populations OB, SI, ER, and EV are clearly genetically separated from the Swiss cattle populations that are now more common and represented by larger numbers of cows. Mean levels of F ROH ranged from 0.027 (ER) to 0.091 (BS). Three of the original Swiss cattle populations, ER (F ROH: 0.027), OB (F ROH: 0.029), and SI (F ROH: 0.039), showed low levels of genomic inbreeding, whereas it was much higher in EV (F ROH: 0.074). Private signatures of selection for the original Swiss cattle populations are reported for BTA4, 5, 11 and 26. CONCLUSIONS: The low levels of genomic inbreeding observed in the original Swiss cattle populations ER, OB and SI compared to the other breeds are explained by a lesser use of artificial insemination and greater use of natural service. Natural service results in more sires having progeny at each generation and thus this breeding practice is likely the major reason for the remarkable levels of genetic diversity retained within these populations. The fact that the EV population is regionally restricted and its small census size of herd-book cows explain its high level of genomic inbreeding.


Assuntos
Bovinos/genética , Endogamia , Polimorfismo de Nucleotídeo Único , Seleção Artificial , Animais , Genoma , Genótipo , População/genética , Suíça
12.
BMC Genomics ; 15: 948, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25361890

RESUMO

BACKGROUND: Advances in human genomics have allowed unprecedented productivity in terms of algorithms, software, and literature available for translating raw next-generation sequence data into high-quality information. The challenges of variant identification in organisms with lower quality reference genomes are less well documented. We explored the consequences of commonly recommended preparatory steps and the effects of single and multi sample variant identification methods using four publicly available software applications (Platypus, HaplotypeCaller, Samtools and UnifiedGenotyper) on whole genome sequence data of 65 key ancestors of Swiss dairy cattle populations. Accuracy of calling next-generation sequence variants was assessed by comparison to the same loci from medium and high-density single nucleotide variant (SNV) arrays. RESULTS: The total number of SNVs identified varied by software and method, with single (multi) sample results ranging from 17.7 to 22.0 (16.9 to 22.0) million variants. Computing time varied considerably between software. Preparatory realignment of insertions and deletions and subsequent base quality score recalibration had only minor effects on the number and quality of SNVs identified by different software, but increased computing time considerably. Average concordance for single (multi) sample results with high-density chip data was 58.3% (87.0%) and average genotype concordance in correctly identified SNVs was 99.2% (99.2%) across software. The average quality of SNVs identified, measured as the ratio of transitions to transversions, was higher using single sample methods than multi sample methods. A consensus approach using results of different software generally provided the highest variant quality in terms of transition/transversion ratio. CONCLUSIONS: Our findings serve as a reference for variant identification pipeline development in non-human organisms and help assess the implication of preparatory steps in next-generation sequencing pipelines for organisms with incomplete reference genomes (pipeline code is included). Benchmarking this information should prove particularly useful in processing next-generation sequencing data for use in genome-wide association studies and genomic selection.


Assuntos
Bovinos , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Animais , Genoma , Software
13.
Vet Dermatol ; 21(6): 545-53, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20626715

RESUMO

Alopecia areata is a hair loss disorder in humans, dogs and horses with a suspected autoimmune aetiology targeting anagen hair follicles. Alopecia areata is only sporadically reported in cows. Recently, we observed several cases of suspected alopecia areata in Eringer cows. The aim of this study was to confirm the presumptive diagnosis of alopecia areata and to define the clinical phenotype and histopathological patterns, including characterization of the infiltrating inflammatory cells. Twenty Eringer cows with alopecia and 11 Eringer cows without skin problems were included in this study. Affected cows had either generalized or multifocal alopecia or hypotrichosis. The tail, forehead and distal extremities were usually spared. Punch biopsies were obtained from the centre and margin of alopecic lesions and normal haired skin. Histological examination revealed several alterations in anagen hair bulbs. These included peri- and intrabulbar lymphocytic infiltration, peribulbar fibrosis, degenerate matrix cells with clumped melanosomes and pigmentary incontinence. Mild lymphocytic infiltrative mural folliculitis was seen in the inferior segment and isthmus of the hair follicles. Hair shafts were often unpigmented and dysplastic. The large majority of infiltrating lymphocytes were CD3(+) T cells, whereas only occasional CD20(+) lymphocytes were present in the peribulbar infiltrate. Our findings confirm the diagnosis of T-cell-mediated alopecia areata in these cows. Alopecia areata appears to occur with increased frequency in the Eringer breed, but distinct predisposing factors could not be identified.


Assuntos
Alopecia em Áreas/veterinária , Doenças dos Bovinos/patologia , Alopecia em Áreas/diagnóstico , Alopecia em Áreas/patologia , Animais , Biópsia por Agulha/veterinária , Bovinos , Doenças dos Bovinos/diagnóstico , Feminino , Folículo Piloso/patologia , Infiltração de Neutrófilos , Linhagem , Pele/patologia
14.
R Soc Open Sci ; 7(7): 200638, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32874658

RESUMO

The transhumance system, which consists in moving animals to high mountain pastures during summer, plays a considerable role in preserving both local biodiversity and traditions, as well as protecting against natural hazard. In cows, particularly, milk production is observed to decline as a response to food shortage and climatic stress, leading to atypical lactation curves that are barely described by current lactation models. Here, we relied on 5 million monthly milk records from over 200 000 Braunvieh and Original Braunvieh cows to devise a new model accounting for transhumance, and test the influence of environmental, physiological and morphological factors on cattle productivity. Counter to expectations, environmental conditions in the mountain showed a globally limited impact on milk production during transhumance, with cows in favourable conditions producing only 10% more compared with cows living in detrimental conditions, and with precipitation in spring and altitude revealing to be the most production-affecting variables. Conversely, physiological factors such as lactation number and pregnancy stage presented an important impact over the whole lactation cycle with 20% difference in milk production, and alter the way animals respond to transhumance. Finally, the considered morphological factors (cow height and foot angle) presented a smaller impact during the whole lactation cycle (10% difference in milk production). The present findings help to anticipate the effect of climate change and to identify problematic environmental conditions by comparing their impact with the effect of factors that are known to influence lactation.

15.
Genes (Basel) ; 11(2)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033434

RESUMO

Goat domestication and human selection for valued traits have formed diverse breeds with characteristic phenotypes. This process led to the fixation of causative genetic variants controlling breed-specific traits within regions of reduced genetic diversity-so-called "selection signatures". We previously reported an analysis of selection signatures based on pooled whole-genome sequencing data of 20 goat breeds and bezoar goats. In the present study, we reanalyzed the data and focused on a subset of eight Pakistani goat breeds (Angora, Barbari, Beetal, Dera Din Panah, Kamori, Nachi, Pahari, Teddy). We identified 749 selection signatures based on reduced heterozygosity in these breeds. A search for signatures that are shared across large-sized goat breeds revealed that five medium-to-large-sized Pakistani goat breeds had a common selection signature on chromosome 6 in a region harboring the LCORL gene, which has been shown to modulate height or body size in several mammalian species. Fine-mapping of the region confirmed that all five goat breeds with the selection signature were nearly fixed for the same haplotype in a ~191 kb region spanning positions 37,747,447-37,938,449. From the pool sequencing data, we identified a frame-shifting single base insertion into an isoform-specific exon of LCORL as a potential candidate causal variant mediating the size-increasing effect. If this preliminary result can be confirmed in independent replication studies, genotyping of this variant might be used to improve breeding programs and the selection for stature in goats.


Assuntos
Cruzamento/métodos , Genética Populacional , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Proteínas Repressoras/genética , Seleção Genética , Animais , Cabras , Paquistão , Fenótipo , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
16.
Genes (Basel) ; 10(10)2019 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-31635058

RESUMO

Mushroom is a unique coat color phenotype in Shetland Ponies characterized by the dilution of the chestnut coat color to a sepia tone and is hypothesized to be a recessive trait. A genome wide association study (GWAS), utilizing the Affymetrix 670K array (MNEc670k) and a single locus mixed linear model analysis (EMMAX), identified a locus on ECA7 for further investigation (Pcorrected = 2.08 × 10-10). This locus contained a 3 Mb run of homozygosity in the 12 mushroom ponies tested. Analysis of high throughput Illumina sequencing data from one mushroom Shetland pony compared to 87 genomes from horses of various breeds, uncovered a frameshift variant, p.Asp201fs, in the MFSD12 gene encoding the major facilitator superfamily domain containing 12 protein. This variant was perfectly concordant with phenotype in 96 Shetland Ponies (P = 1.15 × 10-22), was identified in the closely related Miniature Horse for which the mushroom phenotype is suspected to occur (fmu = 0.02), and was absent in 252 individuals from seven additional breeds not reported to have the mushroom phenotype. MFSD12 is highly expressed in melanocytes and variants in this gene in humans, mice, and dogs impact pigmentation. Given the role of MFSD12 in melanogenesis, we propose that p.Asp201fs is causal for the dilution observed in mushroom ponies.


Assuntos
Mutação da Fase de Leitura , Cavalos/genética , Pigmentação/genética , Pelo Animal/metabolismo , Animais , Proteínas de Membrana Transportadoras/genética
17.
PLoS One ; 12(4): e0176362, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28453561

RESUMO

BACKGROUND: In 2007, the Food and Agriculture Organization of the United Nations (FAO) initiated the Global plan of action for Farm Animal Genetic Resources (FAnGR). The main goal of this plan is to reduce further loss of genetic diversity in farm animals, so as to protect and promote the diversity of farm animal resources. An important step to reach this goal is to monitor and prioritize endangered breeds in the context of conservation programs. METHODOLOGY/WEB PORTAL IMPLEMENTATION: The GENMON WebGIS platform is able to monitor FAnGR and to evaluate the degree of endangerment of livestock breeds. The system takes into account pedigree and introgression information, the geographical concentration of animals, the cryo-conservation plan and the sustainability of breeding activities based on socio-economic data as well as present and future land use conditions. A multi-criteria decision tool supports the aggregation of the multi-thematic indices mentioned above using the MACBETH method, which is based on a weighted average using satisfaction thresholds. GENMON is a monitoring tool to reach subjective decisions made by a government agency. It relies on open source software and is available at http://lasigsrv2.epfl.ch/genmon-ch. RESULTS/SIGNIFICANCE: GENMON allows users to upload pedigree-information (animal ID, parents, birthdate, sex, location and introgression) from a specific livestock breed and to define species and/or region-specific weighting parameters and thresholds. The program then completes a pedigree analysis and derives several indices that are used to calculate an integrated score of conservation prioritization for the breeds under investigation. The score can be visualized on a geographic map and allows a fast, intuitive and regional identification of breeds in danger. Appropriate conservation actions and breeding programs can thus be undertaken in order to promote the recovery of the genetic diversity in livestock breeds in need. The use of the platform is illustrated by means of an example based on three local livestock breeds from different species in Switzerland.


Assuntos
Animais Domésticos/genética , Variação Genética , Informática/métodos , Animais , Cruzamento , Conservação dos Recursos Naturais , Tomada de Decisões , Espécies em Perigo de Extinção , Feminino , Geografia , Masculino
18.
PLoS One ; 12(5): e0177638, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28520805

RESUMO

Evaluating the genetic contribution of individuals to population structure is essential to select informative individuals for genome sequencing, genotype imputation and to ascertain complex population structures. Existing methods for the selection of informative individuals for genomic imputation solely focus on the identification of key ancestors, which can lead to a loss of phasing accuracy of the reference population. Currently many methods are independently applied to investigate complex population structures. Based on the Eigenvalue Decomposition (EVD) of a genomic relationship matrix we describe a novel approach to evaluate the genetic contribution of individuals to population structure. We combined the identification of key contributors with model-based clustering and population network visualization into an integrated three-step approach, which allows identification of high-resolution population structures and substructures around such key contributors. The approach was applied and validated in four disparate datasets including a simulated population (5,100 individuals and 10,000 SNPs), a highly structured experimental sheep population (1,421 individuals and 44,693 SNPs) and two large complex pedigree populations namely horse (1,077 individuals and 38,124 SNPs) and cattle (2,457 individuals and 45,765 SNPs). In the simulated and experimental sheep dataset, our method, which is unsupervised, successfully identified all known key contributors. Applying our three-step approach to the horse and cattle populations, we observed high-resolution population substructures including the absence of obvious important key contributors. Furthermore, we show that compared to commonly applied strategies to select informative individuals for genotype imputation including the computation of marginal gene contributions (Pedig) and the optimization of genetic relatedness (Rel), the selection of key contributors provided the highest phasing accuracies within the selected reference populations. The presented approach opens new perspectives in the characterization and informed management of populations in general, and in areas such as conservation genetics and selective animal breeding in particular, where assessing the genetic contribution of influential and admixed individuals is crucial for research and management applications. As such, this method provides a valuable complement to common applied tools to visualize complex population structures and to select individuals for re-sequencing.


Assuntos
Genética Populacional , Modelos Genéticos , Algoritmos , Animais , Bovinos , Simulação por Computador , Cavalos , Reprodutibilidade dos Testes , Ovinos , Fluxo de Trabalho
19.
PLoS One ; 10(10): e0140749, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26474182

RESUMO

The identification of quantitative trait loci (QTL) such as height and their underlying causative variants is still challenging and often requires large sample sizes. In humans hundreds of loci with small effects control the heritable portion of height variability. In domestic animals, typically only a few loci with comparatively large effects explain a major fraction of the heritability. We investigated height at withers in Shetland ponies and mapped a QTL to ECA 6 by genome-wide association (GWAS) using a small cohort of only 48 animals and the Illumina equine SNP70 BeadChip. Fine-mapping revealed a shared haplotype block of 793 kb in small Shetland ponies. The HMGA2 gene, known to be associated with height in horses and many other species, was located in the associated haplotype. After closing a gap in the equine reference genome we identified a non-synonymous variant in the first exon of HMGA2 in small Shetland ponies. The variant was predicted to affect the functionally important first AT-hook DNA binding domain of the HMGA2 protein (c.83G>A; p.G28E). We assessed the functional impact and found impaired DNA binding of a peptide with the mutant sequence in an electrophoretic mobility shift assay. This suggests that the HMGA2 variant also affects DNA binding in vivo and thus leads to reduced growth and a smaller stature in Shetland ponies. The identified HMGA2 variant also segregates in several other pony breeds but was not found in regular-sized horse breeds. We therefore conclude that we identified a quantitative trait nucleotide for height in horses.


Assuntos
Éxons , Proteína HMGA2/genética , Cavalos/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Animais , Suíça
20.
PLoS One ; 9(1): e86607, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24466169

RESUMO

Hereditary variations in head morphology and head malformations are known in many species. The most common variation encountered in horses is maxillary prognathism. Prognathism and brachygnathism are syndromes of the upper and lower jaw, respectively. The resulting malocclusion can negatively affect teeth wear, and is considered a non-desirable trait in breeding programs. We performed a case-control analysis for maxillary prognathism in horses using 96 cases and 763 controls. All horses had been previously genotyped with a commercially available 50 k SNP array. We analyzed the data with a mixed-model considering the genomic relationships in order to account for population stratification. Two SNPs within a region on the distal end of chromosome ECA 13 reached the Bonferroni corrected genome-wide significance level. There is no known prognathism candidate gene located within this region. Therefore, our findings in the horse offer the possibility of identifying a novel gene involved in the complex genetics of prognathism that might also be relevant for humans and other livestock species.


Assuntos
Cromossomos/genética , Doenças dos Cavalos/genética , Doenças Maxilares/genética , Prognatismo/genética , Animais , Cruzamento , Estudos de Casos e Controles , Estudo de Associação Genômica Ampla , Genótipo , Cavalos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA