Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 18(12): 1489-1495, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34862503

RESUMO

For quality, interpretation, reproducibility and sharing value, microscopy images should be accompanied by detailed descriptions of the conditions that were used to produce them. Micro-Meta App is an intuitive, highly interoperable, open-source software tool that was developed in the context of the 4D Nucleome (4DN) consortium and is designed to facilitate the extraction and collection of relevant microscopy metadata as specified by the recent 4DN-BINA-OME tiered-system of Microscopy Metadata specifications. In addition to substantially lowering the burden of quality assurance, the visual nature of Micro-Meta App makes it particularly suited for training purposes.


Assuntos
Metadados , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Aplicativos Móveis , Linguagens de Programação , Software , Animais , Linhagem Celular , Biologia Computacional/métodos , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Reconhecimento Automatizado de Padrão , Controle de Qualidade , Reprodutibilidade dos Testes , Interface Usuário-Computador , Fluxo de Trabalho
2.
Cytopathology ; 33(3): 312-320, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35102620

RESUMO

CONTEXT: Rapid on-site evaluation (ROSE) optimises the performance of cytology, but requires skilled handling, and smearing can make the material unavailable for some ancillary tests. There is a need to facilitate ROSE without sacrificing part of the sample. OBJECTIVE: We evaluated the image quality of inexpensive deconvolution fluorescence microscopy for optically sectioning non-smeared fine needle aspiration (FNA) tissue fragments. DESIGN: A portion of residual material from 14 FNA samples was stained for 3 min in Hoechst 33342 and Sypro™ Red to label DNA and protein respectively, transferred to an imaging chamber, and imaged at 200× or 400× magnification at 1 micron intervals using a GE DeltaVision inverted fluorescence microscope. A deconvolution algorithm was applied to remove out-of-plane signal, and the resulting images were inverted and pseudocoloured to resemble H&E sections. Five cytopathologists blindly diagnosed 2 to 4 representative image stacks per case (total 70 evaluations), and later compared them to conventional epifluorescent images. RESULTS: Accurate definitive diagnoses were rendered in 45 (64%) of 70 total evaluations; equivocal diagnoses (atypical or suspicious) were made in 21 (30%) of the 70. There were two false positive and two false negative "definite" diagnoses in three cases (4/70; 6%). Cytopathologists preferred deconvolved images compared to raw images (P < 0.01). The imaged fragments were recovered and prepared into a ThinPrep or cell block without discernible alteration. CONCLUSIONS: Deconvolution improves image quality of FNA fragments compared to epifluorescence, often allowing definitive diagnosis while enabling the ROSE material to be subsequently triaged.


Assuntos
Microscopia , Avaliação Rápida no Local , Biópsia por Agulha Fina/métodos , Citodiagnóstico , Técnicas Citológicas , Humanos
3.
J Cell Physiol ; 236(8): 5937-5952, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33452672

RESUMO

A persistent basal tone in the internal anal sphincter (IAS) is essential for keeping the anal canal closed and fecal continence; its inhibition via the rectoanal inhibitory reflex (RAIR) is required for successful defecation. However, cellular signals underlying the IAS basal tone remain enigmatic. Here we report the origin and molecular mechanisms of calcium signals that control the IAS basal tone, using a combination approach including a novel IAS slice preparation that retains cell arrangement and architecture as in vivo, 2-photon imaging, and cell-specific gene-modified mice. We found that IAS smooth muscle cells generate two forms of contractions (i.e., phasic and sustained contraction) and Ca2+ signals (i.e., synchronized Ca2+ oscillations [SCaOs] and asynchronized Ca2+ oscillations [ACaOs]) that last for hours. RyRs, TMEM16A, L-type Ca2+ channels, and gap junctions are required for SCaOs, which account for phasic contraction and 75% of sustained contraction. Nevertheless, only RyRs are required for ACaOs, which contribute 25% of sustained contraction. Nitric oxide, the primary neurotransmitter mediating the RAIR, blocks both types of Ca2+ signals, leading to IAS's full relaxation. Our results show that the oscillating nature of Ca2+ signals generates and maintains the basal tone without causing cytotoxicity to IAS. Our study provides insight into fecal continence and normal defecation.


Assuntos
Canal Anal/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Músculo Liso/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Camundongos , Contração Muscular/fisiologia , Óxido Nítrico/metabolismo , Reflexo/fisiologia
5.
Biol Reprod ; 101(2): 318-327, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31175367

RESUMO

Ion channels in myometrial cells play critical roles in spontaneous and agonist-induced uterine contraction during the menstrual cycle, pregnancy maintenance, and parturition; thus, identifying the genes of ion channels in these cells and determining their roles are essential to understanding the biology of reproduction. Previous studies with in vitro functional and pharmacological approaches have produced controversial results regarding the presence and role of TMEM16A Ca2+-activated Cl- channels in myometrial cells. To unambiguously determine the function of this channel in these cells, we employed a genetic approach by using smooth muscle cell-specific TMEM16A deletion (i.e. TMEM16ASMKO) mice. We found that myometrial cells from TMEM16ASMKO mice generated the same pattern and magnitude in Ca2+ signals upon stimulation with KCl, oxytocin, and PGF2α compared to the isogenic control myometrial cells. At the uterine tissue level, TMEM16A deletion also did not cause detectable changes in either spontaneous or agonist (i.e. KCl, oxytocin, and PGF2α)-induced contractions. Moreover, in vivo the TMEM16ASMKO mice gave birth at full term with the same litter size as genetically identical control mice. Finally, TMEM16A immunostaining in both control and TMEM16ASMKO mice revealed that this protein was highly expressed in the endometrial stroma, but did not co-localize with a smooth muscle specific marker MYH11. Collectively, these results unequivocally demonstrate that TMEM16A does not serve as a pacemaking channel for spontaneous uterine contraction, neither does it function as a depolarizing channel for agonist-evoked uterine contraction. Yet these two functions could underlie the normal gestation length and litter size in the TMEM16ASMKO mice.


Assuntos
Anoctamina-1/metabolismo , Sinalização do Cálcio/fisiologia , Miócitos de Músculo Liso/metabolismo , Contração Uterina/fisiologia , Animais , Anoctamina-1/genética , Feminino , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Tamanho da Ninhada de Vivíparos , Camundongos , Cloreto de Potássio , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Contração Uterina/efeitos dos fármacos
6.
Nucleic Acids Res ; 45(1): 15-25, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27899655

RESUMO

siRNAs are a new class of therapeutic modalities with promising clinical efficacy that requires modification or formulation for delivery to the tissue and cell of interest. Conjugation of siRNAs to lipophilic groups supports efficient cellular uptake by a mechanism that is not well characterized. Here we study the mechanism of internalization of asymmetric, chemically stabilized, cholesterol-modified siRNAs (sd-rxRNAs®) that efficiently enter cells and tissues without the need for formulation. We demonstrate that uptake is rapid with significant membrane association within minutes of exposure followed by the formation of vesicular structures and internalization. Furthermore, sd-rxRNAs are internalized by a specific class of early endosomes and show preferential association with epidermal growth factor (EGF) but not transferrin (Tf) trafficking pathways as shown by live cell TIRF and structured illumination microscopy (SIM). In fixed cells, we observe ∼25% of sd-rxRNA co-localizing with EGF and <5% with Tf, which is indicative of selective endosomal sorting. Likewise, preferential sd-rxRNA co-localization was demonstrated with EEA1 but not RBSN-containing endosomes, consistent with preferential EGF-like trafficking through EEA1-containing endosomes. sd-rxRNA cellular uptake is a two-step process, with rapid membrane association followed by internalization through a selective, saturable subset of the endocytic process. However, the mechanistic role of EEA1 is not yet known. This method of visualization can be used to better understand the kinetics and mechanisms of hydrophobic siRNA cellular uptake and will assist in further optimization of these types of compounds for therapeutic intervention.


Assuntos
Colesterol/química , Endossomos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Transporte Biológico , Células COS , Chlorocebus aethiops , Colesterol/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Endocitose , Fator de Crescimento Epidérmico/genética , Expressão Gênica , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Fluorescência , RNA Interferente Pequeno/química , Transferrina/genética , Transferrina/metabolismo , Proteínas de Transporte Vesicular/genética
7.
J Neurosci ; 37(39): 9438-9452, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28847807

RESUMO

Presynaptic reuptake, mediated by the dopamine (DA) transporter (DAT), terminates DAergic neurotransmission and constrains extracellular DA levels. Addictive and therapeutic psychostimulants inhibit DA reuptake and multiple DAT coding variants have been reported in patients with neuropsychiatric disorders. These findings underscore that DAT is critical for DA neurotransmission and homeostasis. DAT surface availability is regulated acutely by endocytic trafficking, and considerable effort has been directed toward understanding mechanisms that govern DAT's plasma membrane expression and postendocytic fate. Multiple studies have demonstrated DAT endocytic recycling and enhanced surface delivery in response to various stimuli. Paradoxically, imaging studies have not detected DAT targeting to classic recycling endosomes, suggesting that internalized DAT targets to either degradation or an undefined recycling compartment. Here, we leveraged PRIME (PRobe Incorporation Mediated by Enzyme) labeling to couple surface DAT directly to fluorophore, and tracked DAT's postendocytic itinerary in immortalized mesencephalic cells. Following internalization, DAT robustly targeted to retromer-positive endosomes, and DAT/retromer colocalization was observed in male mouse dopaminergic somatodendritic and terminal regions. Short hairpin RNA-mediated Vps35 knockdown revealed that DAT endocytic recycling requires intact retromer. DAT also targeted rab7-positive endosomes with slow, linear kinetics that were unaffected by either accelerating DAT internalization or binding a high-affinity cocaine analog. However, cocaine increased DAT exit from retromer-positive endosomes significantly. Finally, we found that the DAT carboxy-terminal PDZ-binding motif was required for DAT recycling and exit from retromer. These results define the DAT recycling mechanism and provide a unifying explanation for previous, seemingly disparate, DAT endocytic trafficking findings.SIGNIFICANCE STATEMENT The neuronal dopamine (DA) transporter (DAT) recaptures released DA and modulates DAergic neurotransmission, and a number of DAT coding variants have been reported in several DA-related disorders, including infantile parkinsonism, attention-deficit/hyperactivity disorder and autism spectrum disorder. DAT is also competitively inhibited by psychostimulants with high abuse potential. Therefore, mechanisms that acutely affect DAT availability will likely exert significant impact on both normal and pathological DAergic homeostasis. Here, we explore the cellular mechanisms that acutely control DAT surface expression. Our results reveal the intracellular mechanisms that mediate DAT endocytic recycling following constitutive and regulated internalization. In addition to shedding light on this critical process, these findings resolve conflict among multiple, seemingly disparate, previous reports on DAT's postendocytic fate.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Endocitose , Animais , Membrana Celular/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Endossomos/metabolismo , Células HEK293 , Humanos , Masculino , Mesencéfalo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico , Ratos
8.
J Cell Sci ; 129(10): 2106-19, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27068536

RESUMO

The assembly and maintenance of most cilia and flagella rely on intraflagellar transport (IFT). Recent in vitro studies have suggested that, together, the calponin-homology domain within the IFT81 N-terminus and the highly basic N-terminus of IFT74 form a module for IFT of tubulin. By using Chlamydomonas mutants for IFT81 and IFT74, we tested this hypothesis in vivo. Modification of the predicted tubulin-binding residues in IFT81 did not significantly affect basic anterograde IFT and length of steady-state flagella but slowed down flagellar regeneration, a phenotype similar to that seen in a strain that lacks the IFT74 N-terminus. In both mutants, the frequency of tubulin transport by IFT was greatly reduced. A double mutant that combined the modifications to IFT81 and IFT74 was able to form only very short flagella. These results indicate that, together, the IFT81 and IFT74 N-termini are crucial for flagellar assembly, and are likely to function as the main module for IFT of tubulin.


Assuntos
Proteínas de Transporte/genética , Chlamydomonas reinhardtii/genética , Flagelos/genética , Tubulina (Proteína)/genética , Transporte Biológico/genética , Proteínas de Transporte/metabolismo , Chlamydomonas reinhardtii/metabolismo , Cílios/genética , Cílios/metabolismo , Flagelos/metabolismo , Fenótipo , Ligação Proteica , Tubulina (Proteína)/metabolismo
9.
FASEB J ; 31(9): 4037-4052, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28559440

RESUMO

Preterm birth (PTB) is the leading cause of neonatal mortality and morbidity, with few prevention and treatment options. Uterine contraction is a central feature of PTB, so gaining new insights into the mechanisms of this contraction and consequently identifying novel targets for tocolytics are essential for more successful management of PTB. Here we report that myometrial cells from human and mouse express bitter taste receptors (TAS2Rs) and their canonical signaling components (i.e., G-protein gustducin and phospholipase C ß2). Bitter tastants can completely relax myometrium precontracted by different uterotonics. In isolated single mouse myometrial cells, a phenotypical bitter tastant (chloroquine, ChQ) reverses the rise in intracellular Ca2+ concentration ([Ca2+]i) and cell shortening induced by uterotonics, and this reversal effect is inhibited by pertussis toxin and by genetic deletion of α-gustducin. In human myometrial cells, knockdown of TAS2R14 but not TAS2R10 inhibits ChQ's reversal effect on an oxytocin-induced rise in [Ca2+]i Finally, ChQ prevents mouse PTBs induced by bacterial endotoxin LPS or progesterone receptor antagonist mifepristone more often than current commonly used tocolytics, and this prevention is largely lost in α-gustducin-knockout mice. Collectively, our results reveal that activation of the canonical TAS2R signaling system in myometrial cells produces profound relaxation of myometrium precontracted by a broad spectrum of contractile agonists, and that targeting TAS2Rs is an attractive approach to developing effective tocolytics for PTB management.-Zheng, K., Lu, P., Delpapa, E., Bellve, K., Deng, R., Condon, J. C., Fogarty, K., Lifshitz, L. M., Simas, T. A. M., Shi, F., ZhuGe, R. Bitter taste receptors as targets for tocolytics in preterm labor therapy.


Assuntos
Regulação da Expressão Gênica/fisiologia , Miométrio/citologia , Trabalho de Parto Prematuro/tratamento farmacológico , Receptores Acoplados a Proteínas G/metabolismo , Albuterol , Animais , Cálcio/metabolismo , Cloroquina , Feminino , Humanos , Sulfato de Magnésio , Camundongos , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Ocitocina/farmacologia , Fenantrolinas , Gravidez , Compostos de Amônio Quaternário , Receptores Acoplados a Proteínas G/genética , Transducina/genética , Transducina/metabolismo
10.
Proc Natl Acad Sci U S A ; 112(50): 15480-5, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26621748

RESUMO

The dopamine (DA) transporter (DAT) facilitates high-affinity presynaptic DA reuptake that temporally and spatially constrains DA neurotransmission. Aberrant DAT function is implicated in attention-deficit/hyperactivity disorder and autism spectrum disorder. DAT is a major psychostimulant target, and psychostimulant reward strictly requires binding to DAT. DAT function is acutely modulated by dynamic membrane trafficking at the presynaptic terminal and a PKC-sensitive negative endocytic mechanism, or "endocytic brake," controls DAT plasma membrane stability. However, the molecular basis for the DAT endocytic brake is unknown, and it is unknown whether this braking mechanism is unique to DAT or common to monoamine transporters. Here, we report that the cdc42-activated, nonreceptor tyrosine kinase, Ack1, is a DAT endocytic brake that stabilizes DAT at the plasma membrane and is released in response to PKC activation. Pharmacologic and shRNA-mediated Ack1 silencing enhanced basal DAT internalization and blocked PKC-stimulated DAT internalization, but had no effects on SERT endocytosis. Both cdc42 activation and PKC stimulation converge on Ack1 to control Ack1 activity and DAT endocytic capacity, and Ack1 inactivation is required for stimulated DAT internalization downstream of PKC activation. Moreover, constitutive Ack1 activation is sufficient to rescue the gain-of-function endocytic phenotype exhibited by the ADHD DAT coding variant, R615C. These findings reveal a unique endocytic control switch that is highly specific for DAT. Moreover, the ability to rescue the DAT(R615C) coding variant suggests that manipulating DAT trafficking mechanisms may be a potential therapeutic approach to correct DAT coding variants that exhibit trafficking dysregulation.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Endocitose , Proteínas Tirosina Quinases/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Modelos Biológicos , Mutação , Proteína Quinase C/metabolismo , Estabilidade Proteica , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Serotonina/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
11.
Genes Dev ; 23(19): 2272-7, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19797767

RESUMO

The aorta traverses the body, yet little is known about how it is patterned in different anatomical locations. Here, we show that the aorta develops from genetically distinct endothelial cells originating from diverse locations within the embryo. Furthermore, chemokine (C-X-C motif) receptor 4a (cxcr4a) is restricted to endothelial cells derived from anterior mesoderm, and is required specifically for formation of the lateral aortae. Cxcl12b, a cxcr4a ligand, is expressed in endoderm underlying the lateral aortae, and loss of cxcl12b phenocopies cxcr4a deficiency. These studies reveal unexpected endothelial diversity within the aorta that is necessary to facilitate its regional patterning by local cues.


Assuntos
Aorta/embriologia , Padronização Corporal/fisiologia , Quimiocinas/fisiologia , Transdução de Sinais , Peixe-Zebra/embriologia , Animais , Células Endoteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Receptores CXCR4/deficiência , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
12.
J Cell Sci ; 127(Pt 21): 4714-27, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25150219

RESUMO

The protein nephrocystin-4 (NPHP4) is widespread in ciliated organisms, and defects in NPHP4 cause nephronophthisis and blindness in humans. To learn more about the function of NPHP4, we have studied it in Chlamydomonas reinhardtii. NPHP4 is stably incorporated into the distal part of the flagellar transition zone, close to the membrane and distal to CEP290, another transition zone protein. Therefore, these two proteins, which are incorporated into the transition zone independently of each other, define different domains of the transition zone. An nphp4-null mutant forms flagella with nearly normal length, ultrastructure and intraflagellar transport. When fractions from isolated wild-type and nphp4 flagella were compared, few differences were observed between the axonemes, but the amounts of certain membrane proteins were greatly reduced in the mutant flagella, and cellular housekeeping proteins >50 kDa were no longer excluded from mutant flagella. Therefore, NPHP4 functions at the transition zone as an essential part of a barrier that regulates both membrane and soluble protein composition of flagella. The phenotypic consequences of NPHP4 mutations in humans likely follow from protein mislocalization due to defects in the transition zone barrier.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Cílios/metabolismo , Flagelos/metabolismo , Proteínas de Membrana/metabolismo , Movimento Celular/fisiologia , Transporte Proteico/fisiologia
13.
PLoS Biol ; 11(3): e1001501, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23472053

RESUMO

Bronchodilators are a standard medicine for treating airway obstructive diseases, and ß2 adrenergic receptor agonists have been the most commonly used bronchodilators since their discovery. Strikingly, activation of G-protein-coupled bitter taste receptors (TAS2Rs) in airway smooth muscle (ASM) causes a stronger bronchodilation in vitro and in vivo than ß2 agonists, implying that new and better bronchodilators could be developed. A critical step towards realizing this potential is to understand the mechanisms underlying this bronchodilation, which remain ill-defined. An influential hypothesis argues that bitter tastants generate localized Ca(2+) signals, as revealed in cultured ASM cells, to activate large-conductance Ca(2+)-activated K(+) channels, which in turn hyperpolarize the membrane, leading to relaxation. Here we report that in mouse primary ASM cells bitter tastants neither evoke localized Ca(2+) events nor alter spontaneous local Ca(2+) transients. Interestingly, they increase global intracellular [Ca(2+)]i, although to a much lower level than bronchoconstrictors. We show that these Ca(2+) changes in cells at rest are mediated via activation of the canonical bitter taste signaling cascade (i.e., TAS2R-gustducin-phospholipase Cß [PLCß]- inositol 1,4,5-triphosphate receptor [IP3R]), and are not sufficient to impact airway contractility. But activation of TAS2Rs fully reverses the increase in [Ca(2+)]i induced by bronchoconstrictors, and this lowering of the [Ca(2+)]i is necessary for bitter tastant-induced ASM cell relaxation. We further show that bitter tastants inhibit L-type voltage-dependent Ca(2+) channels (VDCCs), resulting in reversal in [Ca(2+)]i, and this inhibition can be prevented by pertussis toxin and G-protein ßγ subunit inhibitors, but not by the blockers of PLCß and IP3R. Together, we suggest that TAS2R stimulation activates two opposing Ca(2+) signaling pathways via Gßγ to increase [Ca(2+)]i at rest while blocking activated L-type VDCCs to induce bronchodilation of contracted ASM. We propose that the large decrease in [Ca(2+)]i caused by effective tastant bronchodilators provides an efficient cell-based screening method for identifying potent dilators from among the many thousands of available bitter tastants.


Assuntos
Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Broncodilatadores/farmacologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Paladar , Animais , Cálcio/metabolismo , Cloroquina/farmacologia , Imuno-Histoquímica , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL
14.
Nature ; 464(7292): 1196-200, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20364122

RESUMO

Within the circulatory system, blood flow regulates vascular remodelling, stimulates blood stem cell formation, and has a role in the pathology of vascular disease. During vertebrate embryogenesis, vascular patterning is initially guided by conserved genetic pathways that act before circulation. Subsequently, endothelial cells must incorporate the mechanosensory stimulus of blood flow with these early signals to shape the embryonic vascular system. However, few details are known about how these signals are integrated during development. To investigate this process, we focused on the aortic arch (AA) blood vessels, which are known to remodel in response to blood flow. By using two-photon imaging of live zebrafish embryos, we observe that flow is essential for angiogenesis during AA development. We further find that angiogenic sprouting of AA vessels requires a flow-induced genetic pathway in which the mechano-sensitive zinc finger transcription factor klf2a induces expression of an endothelial-specific microRNA, mir-126, to activate Vegf signalling. Taken together, our work describes a novel genetic mechanism in which a microRNA facilitates integration of a physiological stimulus with growth factor signalling in endothelial cells to guide angiogenesis.


Assuntos
Aorta Torácica/embriologia , Hemodinâmica , MicroRNAs/metabolismo , Neovascularização Fisiológica , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/genética , Animais , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , MicroRNAs/genética , Células NIH 3T3 , Fluxo Sanguíneo Regional/fisiologia , Peixe-Zebra/sangue , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
15.
Phys Rev Lett ; 114(15): 151302, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25933304

RESUMO

We present evidence of the gravitational lensing of the cosmic microwave background by 10(13) solar mass dark matter halos. Lensing convergence maps from the Atacama Cosmology Telescope Polarimeter (ACTPol) are stacked at the positions of around 12 000 optically selected CMASS galaxies from the SDSS-III/BOSS survey. The mean lensing signal is consistent with simulated dark matter halo profiles and is favored over a null signal at 3.2σ significance. This result demonstrates the potential of microwave background lensing to probe the dark matter distribution in galaxy group and galaxy cluster halos.

16.
Proc Natl Acad Sci U S A ; 109(8): E471-80, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22308388

RESUMO

Cell surface receptors and other proteins internalize through diverse mechanisms at the plasma membrane and are sorted to different destinations. Different subpopulations of early endosomes have been described, raising the question of whether different internalization mechanisms deliver cargo into different subsets of early endosomes. To address this fundamental question, we developed a microscopy platform to detect the precise position of endosomes relative to the plasma membrane during the uptake of ligands. Axial resolution is maximized by concurrently applied total internal reflection fluorescence and epifluorescence-structured light. We found that transferrin receptors are delivered selectively from clathrin-coated pits on the plasma membrane into a specific subpopulation of endosomes enriched in the multivalent Rab GTPase and phosphoinositide-binding protein Rabenosyn-5. Depletion of Rabenosyn-5, but not of other early endosomal proteins such as early endosome antigen 1, resulted in impaired transferrin uptake and lysosomal degradation of transferrin receptors. These studies reveal a critical role for Rabenosyn-5 in determining the fate of transferrin receptors internalized by clathrin-mediated endocytosis and, more broadly, a mechanism whereby the delivery of cargo from the plasma membrane into specific early endosome subpopulations is required for its appropriate intracellular traffic.


Assuntos
Clatrina/metabolismo , Endocitose , Receptores da Transferrina/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Endossomos/metabolismo , Humanos , Transporte Proteico , Fatores de Tempo
17.
Proc Natl Acad Sci U S A ; 109(2): 610-5, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22203976

RESUMO

The type 1 ryanodine receptor (RyR1) is expressed widely in the brain, with high levels in the cerebellum, hippocampus, and hypothalamus. We have shown that L-type Ca(2+) channels in terminals of hypothalamic magnocellular neurons are coupled to RyRs, as they are in skeletal muscle, allowing voltage-induced Ca(2+) release (VICaR) from internal Ca(2+) stores without Ca(2+) influx. Here we demonstrate that RyR1 plays a role in VICaR in nerve terminals. Furthermore, in heterozygotes from the Ryr1(I4895T/WT) (IT/+) mouse line, carrying a knock-in mutation corresponding to one that causes a severe form of human central core disease, VICaR is absent, demonstrating that type 1 RyR mediates VICaR and that these mice have a neuronal phenotype. The absence of VICaR was shown in two ways: first, depolarization in the absence of Ca(2+) influx elicited Ca(2+)syntillas (scintilla, spark, in a nerve terminal, a SYNaptic structure) in WT, but not in mutant terminals; second, in the presence of extracellular Ca(2+), IT/+ terminals showed a twofold decrease in global Ca(2+) transients, with no change in plasmalemmal Ca(2+) current. From these studies we draw two conclusions: (i) RyR1 plays a role in VICaR in hypothalamic nerve terminals; and (ii) a neuronal alteration accompanies the myopathy in IT/+ mice, and, possibly in humans carrying the corresponding RyR1 mutation.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Hipotálamo/citologia , Miopatia da Parte Central/genética , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Fluorescência , Técnicas de Introdução de Genes , Hipotálamo/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
18.
J Neurosci ; 33(45): 17836-46, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24198373

RESUMO

Dopaminergic signaling profoundly impacts rewarding behaviors, movement, and executive function. The presynaptic dopamine (DA) transporter (DAT) recaptures released DA, thereby limiting synaptic DA availability and maintaining dopaminergic tone. DAT constitutively internalizes and PKC activation rapidly accelerates DAT endocytosis, resulting in DAT surface loss. Longstanding evidence supports PKC-stimulated DAT trafficking in heterologous expression studies. However, PKC-stimulated DAT internalization is not readily observed in cultured dopaminergic neurons. Moreover, conflicting reports implicate both classic and nonclassic endocytic mechanisms mediating DAT trafficking. Prior DAT trafficking studies relied primarily upon chronic gene disruption and dominant-negative protein expression, or were performed in cell lines and cultured neurons, yielding results difficult to translate to adult dopaminergic neurons. Here, we use newly described dynamin inhibitors to test whether constitutive and PKC-stimulated DAT internalization are dynamin-dependent in adult dopaminergic neurons. Ex vivo biotinylation studies in mouse striatal slices demonstrate that acute PKC activation drives native DAT surface loss, and that surface DAT surprisingly partitions between endocytic-willing and endocytic-resistant populations. Acute dynamin inhibition reveals that constitutive DAT internalization is dynamin-independent, whereas PKC-stimulated DAT internalization is dynamin-dependent. Moreover, total internal reflection fluorescence microscopy experiments demonstrate that constitutive DAT internalization occurs equivalently from lipid raft and nonraft microdomains, whereas PKC-stimulated DAT internalization arises exclusively from lipid rafts. Finally, DAT endocytic recycling relies on a dynamin-dependent mechanism that acts in concert with the actin cytoskeleton. These studies are the first comprehensive investigation of native DAT trafficking in ex vivo adult neurons, and reveal that DAT surface dynamics are governed by complex multimodal mechanisms.


Assuntos
Corpo Estriado/metabolismo , Citoesqueleto/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Dinaminas/metabolismo , Endocitose/fisiologia , Animais , Linhagem Celular Tumoral , Corpo Estriado/citologia , Neurônios Dopaminérgicos/citologia , Humanos , Masculino , Camundongos , Transporte Proteico/fisiologia
19.
J Physiol ; 592(21): 4639-55, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25128575

RESUMO

Adrenal chromaffin cells (ACCs), stimulated by the splanchnic nerve, generate action potentials (APs) at a frequency near 0.5 Hz in the resting physiological state, at times described as 'rest and digest'. How such low frequency stimulation in turn elicits sufficient catecholamine exocytosis to set basal sympathetic tone is not readily explained by the classical mechanism of stimulus-secretion coupling, where exocytosis is synchronized to AP-induced Ca(2+) influx. By using simulated action potentials (sAPs) at 0.5 Hz in isolated patch-clamped mouse ACCs, we show here that less than 10% of all catecholaminergic exocytosis, measured by carbon fibre amperometry, is synchronized to an AP. The asynchronous phase, the dominant phase, of exocytosis does not require Ca(2+) influx. Furthermore, increased asynchronous exocytosis is accompanied by an AP-dependent decrease in frequency of Ca(2+) syntillas (i.e. transient, focal Ca(2+) release from internal stores) and is ryanodine sensitive. We propose a mechanism of disinhibition, wherein APs suppress Ca(2+) syntillas, which themselves inhibit exocytosis as they do in the case of spontaneous catecholaminergic exocytosis.


Assuntos
Glândulas Suprarrenais/citologia , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Catecolaminas/metabolismo , Células Cromafins/metabolismo , Potenciais de Ação , Animais , Células Cultivadas , Masculino , Camundongos , Técnicas de Patch-Clamp , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
20.
J Cell Sci ; 125(Pt 2): 497-506, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22302985

RESUMO

The neuropilins (NRPs) contribute to the function of cancer cells in their capacity as VEGF receptors. Given that NRP2 is induced in breast cancer and correlates with aggressive disease, we examined the role of NRP2 in regulating the interaction of breast cancer cells with the ECM. Using epithelial cells from breast tumors, we defined NRP2(high) and NRP2(low) populations that differed in integrin expression and adhesion to laminin. Specifically, the NRP2(high) population adhered more avidly to laminin and expressed high levels of the α6ß1 integrin than the NRP2(low) population. The NRP2(high) population formed numerous focal adhesions on laminin that were not seen in the NRP2(low) population. These results were substantiated using breast carcinoma cell lines that express NRP2 and α6ß1 integrin. Depletion experiments revealed that adhesive strength on laminin but not collagen is dependent on NRP2, and that VEGF is needed for adhesion on laminin. A specific interaction between NRP2 and α6ß1 integrin was detected by co-immunoprecipitation. NRP2 is necessary for focal adhesion formation on laminin and for the association of α6ß1 integrin with the cytoskeleton. NRP2 also facilitates α6ß1-integrin-mediated activation of FAK and Src. Unexpectedly, we discovered that NRP2 is located in focal adhesions on laminin. The mechanism by which NRP2 regulates the interaction of α6ß1 integrin with laminin to form focal adhesions involves PKC activation. Together, our data reveal a new VEGF-NRP2 signaling pathway that activates the α6ß1 integrin and enables it to form focal adhesions and signal. This pathway is important in the pathogenesis of breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Adesões Focais , Integrina alfa6beta1/metabolismo , Neuropilina-2/metabolismo , Transdução de Sinais , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Feminino , Humanos , Laminina/metabolismo , Neuropilina-2/fisiologia , Proteína Quinase C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA