Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nature ; 594(7864): 513-516, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34163054

RESUMO

Dragging of light by moving media was predicted by Fresnel1 and verified by Fizeau's celebrated experiments2 with flowing water. This momentous discovery is among the experimental cornerstones of Einstein's special relativity theory and is well understood3,4 in the context of relativistic kinematics. By contrast, experiments on dragging photons by an electron flow in solids are riddled with inconsistencies and have so far eluded agreement with the theory5-7. Here we report on the electron flow dragging surface plasmon polaritons8,9 (SPPs): hybrid quasiparticles of infrared photons and electrons in graphene. The drag is visualized directly through infrared nano-imaging of propagating plasmonic waves in the presence of a high-density current. The polaritons in graphene shorten their wavelength when propagating against the drifting carriers. Unlike the Fizeau effect for light, the SPP drag by electrical currents defies explanation by simple kinematics and is linked to the nonlinear electrodynamics of Dirac electrons in graphene. The observed plasmonic Fizeau drag enables breaking of time-reversal symmetry and reciprocity10 at infrared frequencies without resorting to magnetic fields11,12 or chiral optical pumping13,14. The Fizeau drag also provides a tool with which to study interactions and nonequilibrium effects in electron liquids.

2.
Nature ; 557(7706): 530-533, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29795255

RESUMO

Plasmon polaritons are hybrid excitations of light and mobile electrons that can confine the energy of long-wavelength radiation at the nanoscale. Plasmon polaritons may enable many enigmatic quantum effects, including lasing 1 , topological protection2,3 and dipole-forbidden absorption 4 . A necessary condition for realizing such phenomena is a long plasmonic lifetime, which is notoriously difficult to achieve for highly confined modes 5 . Plasmon polaritons in graphene-hybrids of Dirac quasiparticles and infrared photons-provide a platform for exploring light-matter interaction at the nanoscale6,7. However, plasmonic dissipation in graphene is substantial 8 and its fundamental limits remain undetermined. Here we use nanometre-scale infrared imaging to investigate propagating plasmon polaritons in high-mobility encapsulated graphene at cryogenic temperatures. In this regime, the propagation of plasmon polaritons is primarily restricted by the dielectric losses of the encapsulated layers, with a minor contribution from electron-phonon interactions. At liquid-nitrogen temperatures, the intrinsic plasmonic propagation length can exceed 10 micrometres, or 50 plasmonic wavelengths, thus setting a record for highly confined and tunable polariton modes. Our nanoscale imaging results reveal the physics of plasmonic dissipation and will be instrumental in mitigating such losses in heterostructure engineering applications.

3.
Nature ; 483(7391): 584-8, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22437498

RESUMO

If bosonic particles are cooled down below the temperature of quantum degeneracy, they can spontaneously form a coherent state in which individual matter waves synchronize and combine. Spontaneous coherence of matter waves forms the basis of a number of fundamental phenomena in physics, including superconductivity, superfluidity and Bose-Einstein condensation. Spontaneous coherence is the key characteristic of condensation in momentum space. Excitons--bound pairs of electrons and holes--form a model system to explore the quantum physics of cold bosons in solids. Cold exciton gases can be realized in a system of indirect excitons, which can cool down below the temperature of quantum degeneracy owing to their long lifetimes. Here we report measurements of spontaneous coherence in a gas of indirect excitons. We found that spontaneous coherence of excitons emerges in the region of the macroscopically ordered exciton state and in the region of vortices of linear polarization. The coherence length in these regions is much larger than in a classical gas, indicating a coherent state with a much narrower than classical exciton distribution in momentum space, characteristic of a condensate. A pattern of extended spontaneous coherence is correlated with a pattern of spontaneous polarization, revealing the properties of a multicomponent coherent state. We also observed phase singularities in the coherent exciton gas. All these phenomena emerge when the exciton gas is cooled below a few kelvin.

4.
Nature ; 487(7405): 82-5, 2012 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-22722866

RESUMO

Surface plasmons are collective oscillations of electrons in metals or semiconductors that enable confinement and control of electromagnetic energy at subwavelength scales. Rapid progress in plasmonics has largely relied on advances in device nano-fabrication, whereas less attention has been paid to the tunable properties of plasmonic media. One such medium--graphene--is amenable to convenient tuning of its electronic and optical properties by varying the applied voltage. Here, using infrared nano-imaging, we show that common graphene/SiO(2)/Si back-gated structures support propagating surface plasmons. The wavelength of graphene plasmons is of the order of 200 nanometres at technologically relevant infrared frequencies, and they can propagate several times this distance. We have succeeded in altering both the amplitude and the wavelength of these plasmons by varying the gate voltage. Using plasmon interferometry, we investigated losses in graphene by exploring real-space profiles of plasmon standing waves formed between the tip of our nano-probe and the edges of the samples. Plasmon dissipation quantified through this analysis is linked to the exotic electrodynamics of graphene. Standard plasmonic figures of merit of our tunable graphene devices surpass those of common metal-based structures.


Assuntos
Campos Eletromagnéticos , Grafite/química , Raios Infravermelhos , Nanotecnologia/métodos , Microscopia de Força Atômica , Eletricidade Estática , Propriedades de Superfície
5.
Nano Lett ; 17(9): 5423-5428, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28806525

RESUMO

We report a nanoinfrared (IR) imaging study of the localized plasmon resonance modes of graphene nanoribbons (GNRs) using a scattering-type scanning near-field optical microscope (s-SNOM). By comparing the imaging data of GNRs that are aligned parallel and perpendicular to the in-plane component of the excitation laser field, we observed symmetric and asymmetric plasmonic interference fringes, respectively. Theoretical analysis indicates that the asymmetric fringes are formed due to the interplay between the localized surface plasmon resonance (SPR) mode excited by the GNRs and the propagative surface plasmon polariton (SPP) mode launched by the s-SNOM tip. With rigorous simulations, we reproduce the observed fringe patterns and address quantitatively the role of the s-SNOM tip on both the SPR and SPP modes. Furthermore, we have seen real-space signatures of both the dipole and higher-order SPR modes by varying the ribbon width.

6.
Nano Lett ; 16(12): 7842-7848, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960518

RESUMO

We report on a nanoinfrared (IR) imaging study of ultraconfined plasmonic hotspots inside graphene nanobubbles formed in graphene/hexagonal boron nitride (hBN) heterostructures. The volume of these plasmonic hotspots is more than one-million-times smaller than what could be achieved by free-space IR photons, and their real-space distributions are controlled by the sizes and shapes of the nanobubbles. Theoretical analysis indicates that the observed plasmonic hotspots are formed due to a significant increase of the local plasmon wavelength in the nanobubble regions. Such an increase is attributed to the high sensitivity of graphene plasmons to its dielectric environment. Our work presents a novel scheme for plasmonic hotspot formation and sheds light on future applications of graphene nanobubbles for plasmon-enhanced IR spectroscopy.

7.
Nat Mater ; 14(12): 1217-22, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26413987

RESUMO

Moiré patterns are periodic superlattice structures that appear when two crystals with a minor lattice mismatch are superimposed. A prominent recent example is that of monolayer graphene placed on a crystal of hexagonal boron nitride. As a result of the moiré pattern superlattice created by this stacking, the electronic band structure of graphene is radically altered, acquiring satellite sub-Dirac cones at the superlattice zone boundaries. To probe the dynamical response of the moiré graphene, we use infrared (IR) nano-imaging to explore propagation of surface plasmons, collective oscillations of electrons coupled to IR light. We show that interband transitions associated with the superlattice mini-bands in concert with free electrons in the Dirac bands produce two additive contributions to composite IR plasmons in graphene moiré superstructures. This novel form of collective modes is likely to be generic to other forms of moiré-forming superlattices, including van der Waals heterostructures.

8.
Phys Rev Lett ; 117(7): 076805, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27563987

RESUMO

We theoretically investigate charged collective modes in a two-dimensional conductor with hot electrons where the instantaneous mode frequencies gradually increase or decrease with time. We show that the loss compensation or even amplification of the modes may occur. We apply our theory to two types of collective modes in graphene, the plasmons and the energy waves, which can be probed in optical pump-probe experiments.

9.
Phys Rev Lett ; 117(8): 086801, 2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27588873

RESUMO

We show that the surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by linelike perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept.

10.
Nano Lett ; 15(7): 4455-60, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26083960

RESUMO

Semiclassical quantization rules and numerical calculations are applied to study polariton modes of materials whose permittivity tensor has principal values of opposite sign (so-called hyperbolic materials). The spectra of volume- and surface-confined polaritons are computed for spheroidal nanogranules of hexagonal boron nitride, a natural hyperbolic crystal. The field distribution created by polaritons excited by an external dipole source is predicted to exhibit raylike patterns due to classical periodic orbits. Near-field infrared imaging and Purcell-factor measurements are suggested to test these predictions.

11.
Nano Lett ; 15(12): 8271-6, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26571096

RESUMO

We report on nano-infrared (IR) imaging studies of confined plasmon modes inside patterned graphene nanoribbons (GNRs) fabricated with high-quality chemical-vapor-deposited (CVD) graphene on Al2O3 substrates. The confined geometry of these ribbons leads to distinct mode patterns and strong field enhancement, both of which evolve systematically with the ribbon width. In addition, spectroscopic nanoimaging in the mid-infrared range 850-1450 cm(-1) allowed us to evaluate the effect of the substrate phonons on the plasmon damping. Furthermore, we observed edge plasmons: peculiar one-dimensional modes propagating strictly along the edges of our patterned graphene nanostructures.

12.
Nano Lett ; 15(8): 4973-8, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26222509

RESUMO

We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latter. We found through infrared nanoimaging that bilayer graphene supports plasmons with a higher degree of confinement compared to single- and double-layer graphene, a direct consequence of interlayer tunneling. Moreover, we were able to shut off plasmons in bilayer graphene through gating within a wide voltage range. Theoretical modeling indicates that such a plasmon-off region is directly linked to a gapped insulating state of bilayer graphene, yet another implication of interlayer tunneling. Our work uncovers essential plasmonic properties in bilayer graphene and suggests a possibility to achieve novel plasmonic functionalities in graphene few-layers.

13.
Phys Rev Lett ; 115(11): 116804, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26406849

RESUMO

We report the Drude oscillator strength D and the magnitude of the bulk band gap E_{g} of the epitaxially grown, topological insulator (Bi,Sb)_{2}Te_{3}. The magnitude of E_{g}, in conjunction with the model independent f-sum rule, allows us to establish an upper bound for the magnitude of D expected in a typical Dirac-like system composed of linear bands. The experimentally observed D is found to be at or below this theoretical upper bound, demonstrating the effectiveness of alloying in eliminating bulk charge carriers. Moreover, direct comparison of the measured D to magnetoresistance measurements of the same sample supports assignment of the observed low-energy conduction to topological surface states.

14.
Phys Rev Lett ; 111(9): 096602, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24033058

RESUMO

We resolved the enigma of anisotropic electronic transport in strained vanadium dioxide (VO2) films by inquiring into the role that strain plays in the nanoscale phase separation in the vicinity of the insulator-to-metal transition. The root source of the anisotropy was visualized as the formation of a peculiar unidirectional stripe state which accompanies the phase transition. Furthermore, nanoscale infrared spectroscopy unveils distinct facets of electron-lattice interplay at three different stages of the phase transition. These stages include the initial formation of sparse nonpercolating metallic domains without noticeable involvement of the lattice followed by an electron-lattice coupled anisotropic stripe state close to percolation which ultimately evolves into a nearly isotropic rutile metallic phase. Our results provide a unique mesoscopic perspective for the tunable macroscopic phenomena in strained metal oxide films.

15.
Science ; 379(6632): 555-557, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36758086

RESUMO

We visualized negative refraction of phonon polaritons, which occurs at the interface between two natural crystals. The polaritons-hybrids of infrared photons and lattice vibrations-form collimated rays that display negative refraction when passing through a planar interface between the two hyperbolic van der Waals materials: molybdenum oxide (MoO3) and isotopically pure hexagonal boron nitride (h11BN). At a special frequency ω0, these rays can circulate along closed diamond-shaped trajectories. We have shown that polariton eigenmodes display regions of both positive and negative dispersion interrupted by multiple gaps that result from polaritonic-level repulsion and strong coupling.

16.
Nat Commun ; 14(1): 6200, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794007

RESUMO

Ferroelectricity, a spontaneous and reversible electric polarization, is found in certain classes of van der Waals (vdW) materials. The discovery of ferroelectricity in twisted vdW layers provides new opportunities to engineer spatially dependent electric and optical properties associated with the configuration of moiré superlattice domains and the network of domain walls. Here, we employ near-field infrared nano-imaging and nano-photocurrent measurements to study ferroelectricity in minimally twisted WSe2. The ferroelectric domains are visualized through the imaging of the plasmonic response in a graphene monolayer adjacent to the moiré WSe2 bilayers. Specifically, we find that the ferroelectric polarization in moiré domains is imprinted on the plasmonic response of the graphene. Complementary nano-photocurrent measurements demonstrate that the optoelectronic properties of graphene are also modulated by the proximal ferroelectric domains. Our approach represents an alternative strategy for studying moiré ferroelectricity at native length scales and opens promising prospects for (opto)electronic devices.

17.
Phys Rev Lett ; 107(12): 126806, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-22026788

RESUMO

By using high-magnetic fields (up to 60 T), we observe compelling evidence of the integer quantum Hall effect in trilayer graphene. The magnetotransport fingerprints are similar to those of the graphene monolayer, except for the absence of a plateau at a filling factor of ν=2. At a very low filling factor, the Hall resistance vanishes due to the presence of mixed electron and hole carriers induced by disorder. The measured Hall resistivity plateaus are well reproduced theoretically, using a self-consistent Hartree calculations of the Landau levels and assuming an ABC stacking order of the three layers.

18.
Science ; 371(6529): 617-620, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542134

RESUMO

Collective electronic modes or lattice vibrations usually prohibit propagation of electromagnetic radiation through the bulk of common materials over a frequency range associated with these oscillations. However, this textbook tenet does not necessarily apply to layered crystals. Highly anisotropic materials often display nonintuitive optical properties and can permit propagation of subdiffractional waveguide modes, with hyperbolic dispersion, throughout their bulk. Here, we report on the observation of optically induced electronic hyperbolicity in the layered transition metal dichalcogenide tungsten diselenide (WSe2). We used photoexcitation to inject electron-hole pairs in WSe2 and then visualized, by transient nanoimaging, the hyperbolic rays that traveled along conical trajectories inside of the crystal. We establish here the signatures of programmable hyperbolic electrodynamics and assess the role of quantum transitions of excitons within the Rydberg series in the observed polaritonic response.

19.
Nat Commun ; 12(1): 1641, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712611

RESUMO

Quasi-periodic moiré patterns and their effect on electronic properties of twisted bilayer graphene have been intensely studied. At small twist angle θ, due to atomic reconstruction, the moiré superlattice morphs into a network of narrow domain walls separating micron-scale AB and BA stacking regions. We use scanning probe photocurrent imaging to resolve nanoscale variations of the Seebeck coefficient occurring at these domain walls. The observed features become enhanced in a range of mid-infrared frequencies where the hexagonal boron nitride substrate is optically hyperbolic. Our results illustrate the capabilities of the nano-photocurrent technique for probing nanoscale electronic inhomogeneities in two-dimensional materials.

20.
Phys Rev Lett ; 105(10): 106801, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20867536

RESUMO

The dependence of hopping conductance on temperature and voltage for an ensemble of modestly long one-dimensional wires is studied numerically using the shortest-path algorithm. In a wide range of parameters this dependence can be approximated by a power law rather than the usual stretched-exponential form. The relation to recent experiments and prior analytical theory is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA