Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Environ Microbiol ; 23(7): 3435-3459, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32666586

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are among the most persistent xenobiotic compounds, with high toxicity effects. Mycoremediation with halophilic Aspergillus sydowii was used for their removal from a hypersaline medium (1 M NaCl). A. sydowii metabolized PAHs as sole carbon sources, resulting in the removal of up to 90% for both PAHs [benzo [a] pyrene (BaP) and phenanthrene (Phe)] after 10 days. Elimination of Phe and BaP was almost exclusively due to biotransformation and not adsorption by dead mycelium and did not correlate with the activity of lignin modifying enzymes (LME). Transcriptomes of A. sydowii grown on PAHs, or on glucose as control, both at hypersaline conditions, revealed 170 upregulated and 76 downregulated genes. Upregulated genes were related to starvation, cell wall remodelling, degradation and metabolism of xenobiotics, DNA/RNA metabolism, energy generation, signalling and general stress responses. Changes of LME expression levels were not detected, while the chloroperoxidase gene, possibly related to detoxification processes in fungi, was strongly upregulated. We propose that two parallel metabolic pathways (mitochondrial and cytosolic) are involved in degradation and detoxification of PAHs in A. sydowii resulting in intracellular oxidation of PAHs. To the best of our knowledge, this is the most comprehensive transcriptomic analysis on fungal degradation of PAHs.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Transcriptoma , Aspergillus/genética , Biodegradação Ambiental , Perfilação da Expressão Gênica , Transcriptoma/genética
2.
Arch Microbiol ; 203(2): 549-559, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32980917

RESUMO

In the present study, the nematicidal activity of an isolated strain of Mimosa pudica nodules was evaluated against the Nacobbus aberrans (J2) phytonymatodes with a mortality of 88.8%, while against the gastrointestinal nematode Haemonchus contortus (L3) and free-living Panagrellus redivivus was 100%. The ability to inhibit the growth of phytopathogenic fungi Fusarium sp., and Alternaria solani, as well as the oomycete Phytophthora capsici, this antifungal activity may be related to the ability to produce cellulases, siderophores and chitinases by this bacterial strain. Another important finding was the detection of plant growth promoter characteristics, such as auxin production and phosphate solubilization. The strain identified by sequences of the 16S and rpoB genes as Serratia sp. is genetically related to Serratia marcescens and Serratia nematodiphila. The promoter activity of plant growth, antifungal and nematicide of the Serratia sp. strain makes it an alternative for the biocontrol of fungi and nematodes that affect both the livestock and agricultural sectors, likewise, candidate as a growth-promoting bacterium.


Assuntos
Fungos/efeitos dos fármacos , Mimosa/microbiologia , Nematoides/efeitos dos fármacos , Nódulos Radiculares de Plantas/microbiologia , Serratia/química , Alternaria/efeitos dos fármacos , Animais , Antifúngicos/farmacologia , Proteínas de Bactérias/genética , Quitinases/metabolismo , Endófitos/química , Endófitos/fisiologia , Fusarium/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Mimosa/efeitos dos fármacos , Phytophthora/efeitos dos fármacos , RNA Ribossômico 16S/genética , Serratia/classificação , Serratia/enzimologia , Serratia/genética , Especificidade da Espécie
3.
Protein Expr Purif ; 159: 49-52, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30905871

RESUMO

Metagenomic libraries are a novel and powerful approach to seek for pathways involved in xenobiotic degradation, since this technique abolishes the need for cultivating microorganisms that otherwise would be overlooked if they cannot grow on standard laboratory media and conditions. In this paper, we describe the expression, purification and characterization of a novel metagenomic thioesterase which was described to be involved in phenylacetic acid degradation (A. Sánchez-Reyes, R. Batista-García, G. Valdés-García E. Ortiz, L. Perezgasga, A. Zárate-Romero, N. Pastor, J. L. Folch-Mallol, A Family 13 thioesterase isolated from an activated sludge metagenome: insights into aromatic compounds metabolism, Proteins 85 (2017) 1222-1237). According to similarity and phylogenetic analyses, the enzyme seems to belong to an Actinobacterium. Nevertheless, after a process of denaturation and refolding, the protein expressed in E. coli was obtained in an active form. New data concerning the substrate preferences for this enzyme are presented which suggest that this thioesterase could be involved in breaking the ester bond in the CoA-linear acyl derivatives of the phenylacetic acetic pathway.


Assuntos
Acil Coenzima A/química , Acil Coenzima A/metabolismo , Esgotos/química , Tioléster Hidrolases/genética , Escherichia coli , Cinética , Metagenoma/genética , Fenilacetatos/química , Filogenia , Desnaturação Proteica/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Transdução de Sinais , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo
4.
Proteins ; 85(7): 1222-1237, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28276654

RESUMO

Activated sludge is produced during the treatment of sewage and industrial wastewaters. Its diverse chemical composition allows growth of a large collection of microbial phylotypes with very different physiologic and metabolic profiles. Thus, activated sludge is considered as an excellent environment to discover novel enzymes through functional metagenomics, especially activities related with degradation of environmental pollutants. Metagenomic DNA was isolated and purified from an activated sludge sample. Metagenomic libraries were subsequently constructed in Escherichia coli. Using tributyrin hydrolysis, a screening by functional analysis was conducted and a clone that showed esterase activity was isolated. Blastx analysis of the sequence of the cloned DNA revealed, among others, an ORF that encodes a putative thioesterase with 47-64% identity to GenBank CDS reported genes, similar to those in the hotdog fold thioesterase superfamily. On the basis of its amino acid similarity and its homology-modelled structure we deduced that this gene encodes an enzyme (ThYest_ar) that belongs to family TE13, with a preference for aryl-CoA substrates and a novel catalytic residue constellation. Plasmid retransformation in E. coli confirmed the clone's phenotype, and functional complementation of a paaI E. coli mutant showed preference for phenylacetate over chlorobenzene as a carbon source. This work suggests a role for TE13 family thioesterases in swimming and degradation approaches for phenyl acetic acid. Proteins 2017; 85:1222-1237. © 2017 Wiley Periodicals, Inc.


Assuntos
Metagenoma , Fenilacetatos/química , Esgotos/microbiologia , Tioléster Hidrolases/genética , Sequência de Aminoácidos , Biodegradação Ambiental , Clorobenzenos/química , Clorobenzenos/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Biblioteca Gênica , Teste de Complementação Genética , Humanos , Cinética , Metagenômica , Fases de Leitura Aberta , Fenilacetatos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo
5.
J Environ Manage ; 198(Pt 2): 1-11, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28499155

RESUMO

A number of fungal strains belonging to the ascomycota, basidiomycota and zygomycota genera were subjected to an in vitro screening regime to assess their ligninolytic activity potential, with a view to their potential use in mycoremediation-based strategies to remove phenolic compounds and polycyclic aromatic hydrocarbons (PAHs) from industrial wastewaters. All six basidiomycetes completely decolorized remazol brilliant blue R (RBBR), while also testing positive in both the guaiacol and gallic acid tests indicating good levels of lignolytic activity. All the fungi were capable of tolerating phenanthrene, benzo-α- pyrene, phenol and p-chlorophenol in agar medium at levels of 10 ppm. Six of the fungal strains, Pseudogymnoascus sp., Aspergillus caesiellus, Trametes hirsuta IBB 450, Phanerochate chrysosporium ATCC 787, Pleurotus ostreatus MTCC 1804 and Cadophora sp. produced both laccase and Mn peroxidase activity in the ranges of 200-560 U/L and 6-152 U/L, respectively, in liquid media under nitrogen limiting conditions. The levels of adsorption of the phenolic and PAHs were negligible with 99% biodegradation being observed in the case of benzo-α-pyrene, phenol and p-chlorophenol. The aforementioned six fungal strains were also found to be able to effectively treat highly alkaline industrial wastewater (pH 12.4). When this wastewater was supplemented with 0.1 mM glucose, all of the tested fungi, apart from A. caesiellus, displayed the capacity to remove both the phenolic and PAH compounds. Based on their biodegradative capacity we found T. hirsuta IBB 450 and Pseudogymnoascus sp., to have the greatest potential for further use in mycoremediation based strategies to treat wastestreams containing phenolics and PAHs.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Purificação da Água , Biodegradação Ambiental , Clorofenóis , Resíduos Industriais , Fenóis , Trametes
6.
Proteins ; 83(3): 533-46, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25586442

RESUMO

A new gene from Bjerkandera adusta strain UAMH 8258 encoding a carbohydrate esterase (designated as BacesI) was isolated and expressed in Pichia pastoris. The gene had an open reading frame of 1410 bp encoding a polypeptide of 470 amino acid residues, the first 18 serving as a secretion signal peptide. Homology and phylogenetic analyses showed that BaCesI belongs to carbohydrate esterases family 4. Three-dimensional modeling of the protein and normal mode analysis revealed a breathing mode of the active site that could be relevant for esterase activity. Furthermore, the overall negative electrostatic potential of this enzyme suggests that it degrades neutral substrates and will not act on negative substrates such as peptidoglycan or p-nitrophenol derivatives. The enzyme shows a specific activity of 1.118 U mg(-1) protein on 2-naphthyl acetate. No activity was detected on p-nitrophenol derivatives as proposed from the electrostatic potential data. The deacetylation activity of the recombinant BaCesI was confirmed by measuring the release of acetic acid from several substrates, including oat xylan, shrimp shell chitin, N-acetylglucosamine, and natural substrates such as sugar cane bagasse and grass. This makes the protein very interesting for the biofuels production industry from lignocellulosic materials and for the production of chitosan from chitin.


Assuntos
Coriolaceae/enzimologia , Esterases/química , Esterases/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Biologia Computacional/métodos , Esterases/genética , Proteínas Fúngicas/genética , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
7.
Proteins ; 82(9): 1756-64, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24493659

RESUMO

We isolated a putative citrate transporter of the tripartite tricarboxylate transporter (TTT) class from a metagenomic library of activated sludge from a sewage treatment plant. The transporter, dubbed TctA_ar, shares ∼50% sequence identity with TctA of Comamonas testosteroni (TctA_ct) and other ß-Proteobacteria, and contains two 20-amino acid repeat signature sequences, considered a hallmark of this particular transporter class. The structures for both TctA_ar and TctA_ct were modeled with I-TASSER and two possible structures for this transporter family were proposed. Docking assays with citrate resulted in the corresponding sets of proposed critical residues for function. These models suggest functions for the 20-amino acid repeats in the context of the two different architectures. This constitutes the first attempt at structure modeling of the TTT family, to the best of our knowledge, and could aid functional understanding of this little-studied family.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/ultraestrutura , Comamonas testosteroni/enzimologia , Sequências Repetitivas de Aminoácidos/genética , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/isolamento & purificação , Ácido Cítrico/química , Comamonas testosteroni/genética , Biblioteca Gênica , Metagenoma/genética , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Esgotos/microbiologia
8.
PLoS One ; 19(2): e0297232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38354109

RESUMO

Exophiala is a black fungi of the family Herpotrichiellaceae that can be found in a wide range of environments like soil, water and the human body as potential opportunistic pathogen. Some species are known to be extremophiles, thriving in harsh conditions such as deserts, glaciers, and polluted habitats. The identification of novel Exophiala species across diverse environments underlines the remarkable biodiversity within the genus. However, its classification using traditional phenotypic and phylogenetic analyses has posed a challenges. Here we describe a novel taxon, Exophiala chapopotensis sp. nov., strain LBMH1013, isolated from oil-polluted soil in Mexico, delimited according to combined morphological, molecular, evolutionary and statistics criteria. This species possesses the characteristic dark mycelia growing on PDA and tends to be darker in the presence of hydrocarbons. Its growth is dual with both yeast-like and hyphal forms. LBMH1013 differs from closely related species such as E. nidicola due to its larger aseptate conidia and could be distinguished from E. dermatitidis and E. heteromorpha by its inability to thrive above 37°C or 10% of NaCl. A comprehensive genomic analyses using up-to-date overall genome relatedness indices, several multigene phylogenies and molecular evolutionary analyzes using Bayesian speciation models, further validate its species-specific transition from all current Exophiala/Capronia species. Additionally, we applied the phylophenetic conceptual framework to delineate the species-specific hypothesis in order to incorporate this proposal within an integrative taxonomic framework. We believe that this approach to delimit fungal species will also be useful to our peers.


Assuntos
Ascomicetos , Exophiala , Humanos , Exophiala/genética , Saccharomyces cerevisiae , Filogenia , México , Teorema de Bayes
9.
Microorganisms ; 11(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37630667

RESUMO

Aspergillus flavus has been found to be an effective entomopathogenic fungus for various arthropods, including ticks. In particular, natural fungal infections in cattle ticks show promise for biocontrol of the Rhipicephalus (Boophilus) microplus tick, which is a major ectoparasite affecting cattle worldwide. Our study aimed to elucidate the specific entomopathogenic virulence factors encoded in the genome of an A. flavus strain isolated from naturally infected cattle ticks. We performed morphological and biochemical phenotyping alongside complete genome sequencing, which revealed that the isolated fungus was A. flavus related to the L morphotype, capable of producing a range of gene-coded entomopathogenic virulence factors, including ribotoxin, aflatoxin, kojic acid, chitinases, killer toxin, and satratoxin. To evaluate the efficacy of this A. flavus strain against ticks, we conducted experimental bioassays using healthy engorged female ticks. A morbidity rate of 90% was observed, starting at a concentration of 105 conidia/mL. At a concentration of 107 conidia/mL, we observed a 50% mortality rate and a 21.5% inhibition of oviposition. The highest levels of hatch inhibition (30.8%) and estimated reproduction inhibition (34.64%) were achieved at a concentration of 108 conidia/mL. Furthermore, the tick larval progeny that hatched from the infected tick egg masses showed evident symptoms of Aspergillus infection after incubation.

10.
Plants (Basel) ; 12(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36987025

RESUMO

Heavy metal pollution is a worldwide environmental and human health problem. Prosopis laevigata is a hyperaccumulator legume that bioaccumulates Pb, Cu and Zn. With interest in designing phytoremediation strategies for sites contaminated with heavy metals, we isolated and characterized endophytic fungi from the roots of P. laevigata growing on mine tailings located in Morelos, Mexico. Ten endophytic isolates were selected by morphological discrimination and a preliminary minimum inhibitory concentration was determined for zinc, lead and copper. A novel strain of Aspergillus closest to Aspergillus luchuensis was determined to be a metallophile and presented a marked tolerance to high concentrations of Cu, Zn and Pb, so it was further investigated for removal of metals and promotion of plant growth under greenhouse conditions. The control substrate with fungi promoted larger size characters in P. laevigata individuals in comparison with the other treatments, demonstrating that A. luchuensis strain C7 is a growth-promoting agent for P. laevigata individuals. The fungus favors the translocation of metals from roots to leaves in P. laevigata, promoting an increased Cu translocation. This new A. luchuensis strain showed endophytic character and plant growth-promotion activity, high metal tolerance, and an ability to increase copper translocation. We propose it as a novel, effective and sustainable bioremediation strategy for copper-polluted soils.

11.
J Fungi (Basel) ; 8(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36354945

RESUMO

The Capsicum genus has significant economic importance since it is cultivated and consumed worldwide for its flavor and pungent properties. In 2021, Mexico produced 3.3 billion tons on 45,000 hectares which yielded USD 2 billion in exports to the USA, Canada, Japan, etc. Soil type has a dramatic effect on phosphorus (P) availability for plantsdue to its ion retention.In a previous study, novel fungal isolates were shown to solubilize and mineralize P in different kinds of soils with different P retention capacities. The aim of this work was to study the effects of the mineralogy of different kinds of "milpa" soils on the germination, biomass production, and P absorption of chili plants (Capsicum annuum). The germination percentage, the germination speed index, and the mean germination time were significantly increased in the plants treated with dual inoculation. Foliar phosphorus, growth variables, and plant biomass of chili plants grown in a greenhouse were enhanced in different soil types and with different inocula. Correlation studies suggested that the most significant performance in the foliar P concentration and in the growth response of plants was achieved in Vertisol with dual inoculation of 7 × 106 mL-1 spores per chili plant, suggesting this would be an appropriate approach to enhance chili cultivation depending on the soil type. This study stresses the importance of careful analysis of the effect of the soil type in the plant-microbe interactions.

12.
Front Microbiol ; 13: 840408, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586858

RESUMO

Although various studies have investigated osmoadaptations of halophilic fungi to saline conditions, only few analyzed the fungal mechanisms occurring at saturated NaCl concentrations. Halophilic Aspergillus sydowii is a model organism for the study of molecular adaptations of filamentous fungi to hyperosmolarity. For the first time a multi-omics approach (i.e., transcriptomics and metabolomics) was used to compare A. sydowii at saturated concentration (5.13 M NaCl) to optimal salinity (1 M NaCl). Analysis revealed 1,842 genes differentially expressed of which 704 were overexpressed. Most differentially expressed genes were involved in metabolism and signal transduction. A gene ontology multi-scale network showed that ATP binding constituted the main network node with direct interactions to phosphorelay signal transduction, polysaccharide metabolism, and transferase activity. Free amino acids significantly decreased and amino acid metabolism was reprogrammed at 5.13 M NaCl. mRNA transcriptional analysis revealed upregulation of genes involved in methionine and cysteine biosynthesis at extreme water deprivation by NaCl. No modifications of membrane fatty acid composition occurred. Upregulated genes were involved in high-osmolarity glycerol signal transduction pathways, biosynthesis of ß-1,3-glucans, and cross-membrane ion transporters. Downregulated genes were related to the synthesis of chitin, mannose, cell wall proteins, starvation, pheromone synthesis, and cell cycle. Non-coding RNAs represented the 20% of the total transcripts with 7% classified as long non-coding RNAs (lncRNAs). The 42% and 69% of the total lncRNAs and RNAs encoding transcription factors, respectively, were differentially expressed. A network analysis showed that differentially expressed lncRNAs and RNAs coding transcriptional factors were mainly related to the regulation of metabolic processes, protein phosphorylation, protein kinase activity, and plasma membrane composition. Metabolomic analyses revealed more complex and unknown metabolites at saturated NaCl concentration than at optimal salinity. This study is the first attempt to unravel the molecular ecology of an ascomycetous fungus at extreme water deprivation by NaCl (5.13 M). This work also represents a pioneer study to investigate the importance of lncRNAs and transcriptional factors in the transcriptomic response to high NaCl stress in halophilic fungi.

13.
Plants (Basel) ; 10(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922867

RESUMO

White-rot fungi are efficient lignin degraders due to the secretion of lignin peroxidase, manganese peroxidase, laccase, and versatile peroxidase (VP) on decayed wood. The VP is a high-redox-potential enzyme and could be used to detoxify reactive oxygen species (ROS), which accumulate in plants during biotic and abiotic stresses. We cloned the VP gene and expressed it via the Agrobacterium transformation procedure in transgenic tobacco plants to assay their tolerance to different abiotic stress conditions. Thirty independent T2 transgenic VP lines overexpressing the fungal Bjerkandera adustaVP gene were selected on kanamycin. The VP22, VP24, and VP27 lines showed significant manganese peroxidase (MnP) activity. The highest was VP22, which showed 10.87-fold more manganese peroxidase activity than the wild-type plants and led to a 34% increase in plant height and 28% more biomass. The VP22, VP24, and VP27 lines showed enhanced tolerance to drought, 200 mM NaCl, and 400 mM sorbitol. Also, these transgenics displayed significant tolerance to methyl viologen, an active oxygen-generating compound. The present data indicate that overproducing the VP gene in plants increases significantly their biomass and the abiotic stress tolerance. The VP enzyme is an effective biotechnological tool to protect organisms against ROS. In transgenic tobacco plants, it improves drought, salt, and oxidative stress tolerance. Thus, the VP gene represents a great potential for obtaining stress-tolerant crops.

14.
J Fungi (Basel) ; 7(8)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34436216

RESUMO

Anthracnose caused by the hemibiotroph fungus Colletotrichum gloeosporioides is a devastating plant disease with an extensive impact on plant productivity. The process of colonization and disease progression of C. gloeosporioides has been studied in a number of angiosperm crops. To better understand the evolution of the plant response to pathogens, the study of this complex interaction has been extended to bryophytes. The model moss Physcomitrium patens Hedw. B&S (former Physcomitrella patens) is sensitive to known bacterial and fungal phytopathogens, including C. gloeosporioides, which cause infection and cell death. P. patens responses to these microorganisms resemble that of the angiosperms. However, the molecular events during the interaction of P. patens and C. gloeosporioides have not been explored. In this work, we present a comprehensive approach using microscopy, phenomics and RNA-seq analysis to explore the defense response of P. patens to C. gloeosporioides. Microscopy analysis showed that appressoria are already formed at 24 h after inoculation (hai) and tissue colonization and cell death occur at 24 hai and is massive at 48 hai. Consequently, the phenomics analysis showed progressing browning of moss tissues and impaired photosynthesis from 24 to 48 hai. The transcriptomic analysis revealed that more than 1200 P. patens genes were differentially expressed in response to Colletotrichum infection. The analysis of differentially expressed gene function showed that the C. gloeosporioides infection led to a transcription reprogramming in P. patens that upregulated the genes related to pathogen recognition, secondary metabolism, cell wall reinforcement and regulation of gene expression. In accordance with the observed phenomics results, some photosynthesis and chloroplast-related genes were repressed, indicating that, under attack, P. patens changes its transcription from primary metabolism to defend itself from the pathogen.

15.
Environ Pollut ; 271: 116358, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33385892

RESUMO

Polyaromatic phenanthrene (Phe) and benzo[a]pyrene (BaP) are highly toxic, mutagenic, and carcinogenic contaminants widely dispersed in nature, including saline environments. Polyextremotolerant Rhodotorula mucilaginosa EXF-1630, isolated from Arctic sea ice, was grown on a huge concentration range -10 to 500 ppm- of Phe and BaP as sole carbon sources at hypersaline conditions (1 M NaCl). Selected polycyclic aromatic hydrocarbons (PAHs) supported growth as well as glucose, even at high PAH concentrations. Initially, up to 40% of Phe and BaP were adsorbed, followed by biodegradation, resulting in 80% removal in 10 days. While extracellular laccase, peroxidase, and un-specific peroxygenase activities were not detected, NADPH-cytochrome c reductase activity peaked at 4 days. The successful removal of PAHs and the absence of toxic metabolites were confirmed by toxicological tests on moss Physcomitrium patens, bacterium Aliivibrio fischeri, human erythrocytes, and pulmonary epithelial cells (A549). Metabolic profiles were determined at the midpoint of the biodegradation exponential phase, with added Phe and BaP (100 ppm) and 1 M NaCl. Different hydroxylated products were found in the culture medium, while the conjugative metabolite 1-phenanthryl-ß-D-glucopyranose was detected in the medium and in the cells. Transcriptome analysis resulted in 870 upregulated and 2,288 downregulated transcripts on PAHs, in comparison to glucose. Genomic mining of 61 available yeast genomes showed a widespread distribution of 31 xenobiotic degradation pathways in different yeast lineages. Two distributions with similar metabolic capacities included black yeasts and mainly members of the Sporidiobolaceae family (including EXF-1630), respectively. This is the first work describing a metabolic profile and transcriptomic analysis of PAH degradation by yeast.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Benzo(a)pireno/análise , Benzo(a)pireno/toxicidade , Biodegradação Ambiental , DNA Fúngico , Expressão Gênica , Humanos , Metaboloma , Rhodotorula
16.
J Fungi (Basel) ; 7(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073303

RESUMO

Aspergillus sydowii is a moderate halophile fungus extensively studied for its biotechnological potential and halophile responses, which has also been reported as a coral reef pathogen. In a recent publication, the transcriptomic analysis of this fungus, when growing on wheat straw, showed that genes related to cell wall modification and cation transporters were upregulated under hypersaline conditions but not under 0.5 M NaCl, the optimal salinity for growth in this strain. This led us to study osmolyte accumulation as a mechanism to withstand moderate salinity. In this work, we show that A. sydowii accumulates trehalose, arabitol, mannitol, and glycerol with different temporal dynamics, which depend on whether the fungus is exposed to hypo- or hyperosmotic stress. The transcripts coding for enzymes responsible for polyalcohol synthesis were regulated in a stress-dependent manner. Interestingly, A. sydowii contains three homologs (Hog1, Hog2 and MpkC) of the Hog1 MAPK, the master regulator of hyperosmotic stress response in S. cerevisiae and other fungi. We show a differential regulation of these MAPKs under different salinity conditions, including sustained basal Hog1/Hog2 phosphorylation levels in the absence of NaCl or in the presence of 2.0 M NaCl, in contrast to what is observed in S. cerevisiae. These findings indicate that halophilic fungi such as A. sydowii utilize different osmoadaptation mechanisms to hypersaline conditions.

17.
Plants (Basel) ; 10(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34579451

RESUMO

Here, we analyzed the effects on Capsicum annuum plants of Trichoderma atroviride P. Karst strains altered in the expression of SWOLLENIN (SWO1), a protein with amorphogenic activity on plant cell wall components. Strains of T. atroviride that overexpressed the Taswo1 gene were constructed as well as deletion mutants. A novel, cheap and accurate method for assessing root colonization was developed. Colonization assays showed that the Taswo1 overexpressing strains invaded the host root better than the WT, resulting in a stronger plant growth-promoting effect. The expression of plant defense marker genes for both the systemic acquired resistance and induced systemic resistance pathways was enhanced in plants inoculated with Taswo1 overexpressing strains, while inoculation with deletion mutant strains resulted in a similar level of expression to that observed upon inoculation with the wild-type strain. Response to pathogen infection was also enhanced in the plants inoculated with the Taswo1 overexpressing strains, and surprisingly, an intermediate level of protection was achieved with the mutant strains. Tolerance to abiotic stresses was also higher in plants inoculated with the Taswo1 overexpressing strains but was similar in plants inoculated with the wild-type or the mutant strains. Compatible osmolyte production in drought conditions was studied. This study may contribute to improving Trichoderma biocontrol and biofertilization abilities.

18.
J Air Waste Manag Assoc ; 70(12): 1244-1251, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32271654

RESUMO

With the increase in the cognizance toward the wide and abundant lignocellulosic biomass, a great interest has been garnered toward the production of value-added products from the biomass. Hence, by capitalizing the Casuarina equisetifolia biomass, the current work developed a simultaneous pre-treatment and saccharification (SPS) process using transgenic Trichoderma atroviride. The ability of T. atroviride to produce lignolytic and cellulolytic enzymes was enhanced by optimizing key process parameters. Under the optimized conditions, a maximum of 1245.6 U/kg of cellulase and 1203.36 U/kg of xylanase, 183.2 U/kg of laccase along with 392.36 g/kg of fermentable sugars were obtained. On comparing with acid and alkaline pre-treatment methods, the T. atroviride -mediated SPS process exhibited trace formation of fermentative inhibitors, which resulted in a minimal inhibition of Escherichia coli. Overall, the current work implements the biorefinery concept on Casuarina equisetifolia biomass by advocating circular economy. Implications: Valorization of lignocellulosic waste biomass into value added compound and as biofuel is considered as a promising alternative resource, owing to its availability and low production cost. However, the presence of chemically resistant lignin demands an intensive treatment process, which sometimes leads to the formation of fermentative inhibitors. Casuarina equisetifolia is a deciduous commercial plant, and an average of 125 tonnes/hector of waste is generated annually in India. By considering the demerit of delignification and the wide availability of Casuarina equisetifolia biomass (CB), the current work aimed at the development of a single-pot simultaneous pre-treatment and saccharification (SPS) of CB by transgenic Trichoderma atroviride.


Assuntos
Fagales , Hypocreales/metabolismo , Microrganismos Geneticamente Modificados/metabolismo , Açúcares/metabolismo , Biocombustíveis , Biomassa , Celulase/metabolismo , Celulose/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Fermentação , Hypocreales/genética , Lacase/metabolismo , Lignina/metabolismo
19.
J Fungi (Basel) ; 6(3)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823980

RESUMO

Since Aromatic hydrocarbons are recalcitrant and toxic, strategies to remove them are needed. The aim of this work was to isolate fungi capable of using aromatic hydrocarbons as carbon sources. Two isolates from an oil polluted site in Mexico were identified through morphological and molecular markers as a novel Rhodotorula sp. and an Exophiala sp. Both strains were able to grow in a wide range of pH media, from 4 to 12, showing their optimal growth at alkaline pH's and are both halotolerant. The Exophiala strain switched from hyphae to yeast morphotype in high salinity conditions. To the best of our knowledge, this is the first report of salt triggering dimorphism. The Rhodotorula strain, which is likely a new undescribed species, was capable of removing singled ringed aromatic compounds such as benzene, xylene, and toluene, but could not remove benzo[a] pyrene nor phenanthrene. Nevertheless, these hydrocarbons did not impair its growth. The Exophiala strain showed a different removal capacity. It could remove the polyaromatic hydrocarbons but performed poorly at removing toluene and xylene. Nevertheless, it still could grow well in the presence of the aromatic compounds. These strains could have a potential for aromatic compounds removal.

20.
J Air Waste Manag Assoc ; 70(12): 1252-1259, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32701040

RESUMO

Lignin obtained from renewable biomass is a potential feedstock for the synthesis of various value-added chemicals through efficient biocatalytic routes. The ligninolytic enzymes-assisted depolymerization of lignin to vanillin constitutes the most commercially attractive and promising approach in green chemistry as vanillin constitutes the second most prevalent flavoring agent. Thus, in the present work, immobilized laccase and versatile peroxidase, and further, a co-immobilized laccase and versatile peroxidase system on magnetic silica microspheres (MSMS) were developed to generate a robust biocatalytic system that mediates the depolymerization of lignin obtained from Casuarina equisetifolia biomass. The depolymerization of lignin by free and immobilized laccase showed a vanillin yield of 24.8% and 23%, respectively, at pH 4.0 in 6 h at 30°C against a vanillin yield of 20% and 21.7% with the free and immobilized versatile peroxidase, respectively, at pH 5.0°C and 50°C. Comparatively, the system with the co-immobilized laccase and versatile peroxidase exhibited a 1-fold and 1.2-fold higher vanillin yield than the free and immobilized laccase system, respectively. On comparing with the versatile peroxidase system, the co-immobilized biocatalytic system displayed 1.3-fold and 1.2-fold increased vanillin yield than the free and immobilized versatile peroxidase system, respectively, at a pH of 6.0 in 6 h at 30°C with an enzyme concentration of 1 U/ml. The reusability studies of the co-immobilized biocatalytic system exhibited that both the enzymes retained up to 40% of its activity till sixth cycle. Implications: The waste biomass of Casuarina equisetifolia is widely available around the coastal regions of India which does not have any agricultural or industrial applications. The present work exploits the lignocellulosic content of the Casuarina biomass to extract the lignin, which provides a renewable alternative for the production of the commercially high-valued compound, vanillin. This work also integrates a co-immobilized biocatalytic process comprising of laccase and versatile peroxidase leading to an environmentally benign enzymatic process for the depolymerization of lignin to vanillin.


Assuntos
Benzaldeídos/química , Lacase/química , Lignina/química , Peroxidase/química , Biocatálise , Biomassa , Fenômenos Magnéticos , Microesferas , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA