Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oecologia ; 195(1): 117-129, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33392789

RESUMO

Understanding the mechanisms underlying population decline is a critical challenge for conservation biologists. Both deterministic (e.g. habitat loss, fragmentation, and Allee effect) and stochastic (i.e. demographic and environmental stochasticity) demographic processes are involved in population decline. Simultaneously, a decrease of population size has far-reaching consequences for genetics of populations by increasing the risk of inbreeding and the strength of genetic drift, which together inevitably results in a loss of genetic diversity and a reduced effective population size ([Formula: see text]). These genetic factors may retroactively affect vital rates (a phenomenon coined 'inbreeding depression'), reduce population growth, and accelerate demographic decline. To date, most studies that have examined the demographic and genetic processes driving the decline of wild populations have neglected their spatial structure. In this study, we examined demographic and genetic factors involved in the decline of a spatially structured population of a lekking bird, the western capercaillie (Tetrao urogallus). To address this issue, we collected capture-recapture and genetic data over a 6-years period in the Vosges Mountains (France). Our study showed that the population of T. urogallus experienced a severe decline between 2010 and 2015. We did not detect any Allee effect on survival and recruitment. By contrast, individuals of both sexes dispersed to avoid small subpopulations, thus suggesting a potential behavioral response to a mate finding Allee effect. In parallel to this demographic decline, the population showed low levels of genetic diversity, high inbreeding and low effective population sizes at both subpopulation and population levels. Despite this, we did not detect evidence of inbreeding depression: neither adult survival nor recruitment were affected by individual inbreeding level. Our study underlines the benefit from combining demographic and genetic approaches to investigate processes that are involved in population decline.


Assuntos
Aves , Ecossistema , Animais , Aves/genética , Feminino , França , Deriva Genética , Variação Genética , Genética Populacional , Humanos , Endogamia , Masculino , Densidade Demográfica , Dinâmica Populacional
2.
Oecologia ; 191(1): 97-112, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31422471

RESUMO

Kin selection and dispersal play a critical role in the evolution of cooperative breeding systems. Limited dispersal increases relatedness in spatially structured populations (population viscosity), with the result that neighbours tend to be genealogical relatives. Yet the increase in neighbours' fitness-related performance through altruistic interaction may also result in habitat saturation and thus exacerbate local competition between kin. Our goal was to detect the footprint of kin selection and competition by examining the spatial structure of relatedness and by comparing non-effective and effective dispersal in a population of a lekking bird, Tetrao urogallus. For this purpose, we analysed capture-recapture and genetic data collected over a 6-year period on a spatially structured population of T. urogallus in France. Our findings revealed a strong spatial structure of relatedness in males. They also indicated that the population viscosity could allow male cooperation through two non-exclusive mechanisms. First, at their first lek attendance, males aggregate in a lek composed of relatives. Second, the distance corresponding to non-effective dispersal dramatically outweighed effective dispersal distance, which suggests that dispersers incur high post-settlement costs. These two mechanisms result in strong population genetic structuring in males. In females, our findings revealed a lower level of spatial structure of relatedness and genetic structure in respect to males. Additionally, non-effective dispersal and effective dispersal distances in females were highly similar, which suggests limited post-settlement costs. These results indicate that kin-dependent dispersal decisions and costs have a genetic footprint in wild populations and are factors that may be involved in the evolution of cooperative courtship.


Assuntos
Cruzamento , Repetições de Microssatélites , Animais , Aves , Feminino , França , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA