Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Oncologist ; 26(7): e1263-e1272, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33904632

RESUMO

BACKGROUND: Histiocytic and dendritic cell neoplasms are a diverse group of tumors arising from monocytic or dendritic cell lineage. Whereas the genomic features for Langerhans cell histiocytosis and Erdheim-Chester disease have been well described, other less common and often aggressive tumors in this broad category remain poorly characterized, and comparison studies across the World Health Organization diagnostic categories are lacking. METHODS: Tumor samples from a total of 102 patient cases within four major subtypes of malignant histiocytic and dendritic cell neoplasms, including 44 follicular dendritic cell sarcomas (FDCSs), 41 histiocytic sarcomas (HSs), 7 interdigitating dendritic cell sarcomas (IDCSs), and 10 Langerhans cell sarcomas (LCSs), underwent hybridization capture with analysis of up to 406 cancer-related genes. RESULTS: Among the entire cohort of 102 patients, CDKN2A mutations were most frequent across subtypes and made up 32% of cases, followed by TP53 mutations (22%). Mitogen-activated protein kinase (MAPK) pathway mutations were present and enriched among the malignant histiocytosis (M) group (HS, IDCS, and LCS) but absent in FDCS (72% vs. 0%; p < .0001). In contrast, NF-κB pathway mutations were frequent in FDCSs but rare in M group histiocytoses (61% vs. 12%; p < .0001). Tumor mutational burden was significantly higher in M group histiocytoses as compared with FDCSs (median 4.0/Mb vs. 2.4/Mb; p = .012). We also describe a pediatric patient with recurrent secondary histiocytic sarcoma treated with targeted therapy and interrogated by molecular analysis to identify mechanisms of therapeutic resistance. CONCLUSION: A total of 42 patient tumors (41%) harbored pathogenic mutations that were potentially targetable by approved and/or investigative therapies. Our findings highlight the potential value of molecular testing to enable precise tumor classification, identify candidate oncogenic drivers, and define personalized therapeutic options for patients with these aggressive tumors. IMPLICATIONS FOR PRACTICE: This study presents comprehensive genomic profiling results on 102 patient cases within four major subtypes of malignant histiocytic and dendritic cell neoplasms, including 44 follicular dendritic cell sarcomas (FDCSs), 41 histiocytic sarcomas (HSs), 7 interdigitating dendritic cell sarcomas (IDCSs), and 10 Langerhans cell sarcomas (LCSs). MAPK pathway mutations were present and enriched among the malignant histiocytosis (M) group (HS, IDCS, and LCS) but absent in FDCSs. In contrast, NF-κB pathway mutations were frequent in FDCSs but rare in M group histiocytosis. A total of 42 patient tumors (41%) harbored pathogenic mutations that were potentially targetable by approved and/or investigative therapies.


Assuntos
Sarcoma de Células Dendríticas Foliculares , Transplante de Células-Tronco Hematopoéticas , Sarcoma , Criança , Sarcoma de Células Dendríticas Foliculares/genética , Células Dendríticas , Genômica , Humanos , Mutação , Recidiva Local de Neoplasia , Sarcoma/genética
2.
Am J Surg Pathol ; 48(6): 699-707, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38369783

RESUMO

Myxofibrosarcoma (MFS) is a common soft tissue sarcoma of the elderly that typically shows low tumor mutational burden, with mutations in TP53 and in genes associated with cell cycle checkpoints ( RB1 , CDKN2A ). Unfortunately, no alterations or markers specific to MFS have been identified and, as a consequence, there are no effective targeted therapies. The receptor tyrosine kinase AXL, which drives cellular proliferation, is targetable by new antibody-based therapeutics. Expression of AXL messenger RNA is elevated in a variety of sarcoma types, with the highest levels reported in MFS, but the pathogenic significance of this finding remains unknown. To assess a role for AXL abnormalities in MFS, we undertook a search for AXL genomic alterations in a comprehensive genomic profiling database of 463,546 unique tumors (including 19,879 sarcomas, of which 315 were MFS) interrogated by targeted next-generation DNA and/or RNA sequencing. Notably, the only genomic alterations recurrent in a specific sarcoma subtype were AXL W451C (n = 8) and AXL W450C (n = 2) mutations. The tumors involved predominantly older adults (age: 44 to 81 [median: 72] y) and histologically showed epithelioid and spindle-shaped cells in a variably myxoid stroma, with 6 cases diagnosed as MFS, 3 as undifferentiated pleomorphic sarcoma (UPS), and 1 as low-grade sarcoma. The AXL W451C mutation was not identified in any non-sarcoma malignancy. A review of publicly available data sets revealed a single AXL W451C-mutant case of UPS that clustered with MFS/UPS by methylation profiling. Functional studies revealed a novel activation mechanism: the W451C mutation causes abnormal unregulated dimerization of the AXL receptor tyrosine kinase through disulfide bond formation between pairs of mutant proteins expressing ectopic cysteine residues. This dimerization triggers AXL autophosphorylation and activation of downstream ERK signaling. We further report sarcomas of diverse histologic subtypes with AXL gene amplifications, with the highest frequency of amplification identified in MFS cases without the W451C mutation. In summary, the activating AXL W451C mutation appears highly specific to MFS, with a novel mechanism to drive unregulated signaling. Moreover, AXL gene amplifications and messenger RNA overexpression are far more frequent in MFS than in other sarcoma subtypes. We conclude that these aberrations in AXL are distinct features of MFS and may aid diagnosis, as well as the selection of available targeted therapies.


Assuntos
Receptor Tirosina Quinase Axl , Fibrossarcoma , Mutação , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Humanos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Fibrossarcoma/genética , Fibrossarcoma/patologia , Fibrossarcoma/enzimologia , Pessoa de Meia-Idade , Idoso , Adulto , Feminino , Masculino , Análise Mutacional de DNA , Biomarcadores Tumorais/genética , Predisposição Genética para Doença , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Idoso de 80 Anos ou mais , Fenótipo , Bases de Dados Genéticas
3.
Am J Surg Pathol ; 46(6): 729-741, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35034043

RESUMO

Inactivating mutations in tumor suppressor genes TP53 and RB1 are considered central drivers in leiomyosarcomas (LMSs). In high-risk human papillomavirus (HPV)-related tumors, a similar functional outcome is achieved through oncoproteins E6 and E7, which inactivate the p53 and RB1 proteins, respectively. Here, we hypothesized that HPV infection could provide an alternative mechanism for tumorigenesis in a subset of TP53/RB1-wildtype LMS. We evaluated tumor samples from 2585 consecutive unique patients carrying a diagnosis of gynecologic or soft tissue LMS. Tumor DNA and available RNA were analyzed by hybrid-capture-based next-generation sequencing/comprehensive genomic profiling of 406 genes and transcripts (FoundationOneHeme). Of the initial 2585 cases, we excluded 16 based on the presence of molecular alterations that are considered defining for sarcomas other than LMS. In the remaining 2569 cases, we searched for LMS that were TP53/RB1-wildtype (n=486 of 2569; 18.9%). We also searched LMS tumors for HPV sequences that we then classified into genotypes by de novo assembly of nonhuman sequencing reads followed by alignment to the RefSeq database. Among TP53/RB1-wildtype LMS, we identified 18 unique cases harboring HPV sequences. Surprisingly, most (n=11) were HPV51-positive, and these 11 represented all HPV51-positive tumors in our entire LMS database (n=11 of 2569; 0.4%). The absence of genomic alterations in TP53 or RB1 in HPV51-positive LMS represented a marked difference from HPV51-negative LMS (n=2558; 0% vs. 72% [P<0.00001], 0% vs. 53% [P=0.0002]). In addition, compared with HPV51-negative LMS, HPV51-positive LMS were significantly enriched for genomic alterations in ATRX (55% vs. 24%, P=0.027) and TSC1 (18% vs. 0.6%, P=0.0047). All HPV51-positive LMS were in women; median age was 54 years at surgery (range: 23 to 74 y). All known primary sites were from the gynecologic tract or adjacent anogenital area, including 5 cases of vaginal primary site. Histology was heterogeneous, with evaluable cases showing predominant epithelioid (n=5) and spindle (n=5) morphology. In situ hybridization confirmed the presence of high-risk HPV E6/E7 mRNA in tumor cells in three of three evaluable cases harboring HPV51 genomic sequences. Overall, in our pan-LMS analysis, HPV reads were identified in a subset of TP53/RB1-wildtype LMS. For all HPV51-associated LMS, the striking absence of any detectable TP53 or RB1 mutations and predilection for the female lower reproductive tract supports our hypothesis that high-risk HPV can be an alternative tumorigenic mechanism in this distinct class of LMS.


Assuntos
Leiomiossarcoma , Infecções por Papillomavirus , Feminino , Humanos , Hibridização In Situ , Leiomiossarcoma/genética , Leiomiossarcoma/patologia , Pessoa de Meia-Idade , Papillomaviridae/genética , Proteínas de Ligação a Retinoblastoma/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA