Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Lancet ; 403(10423): 305-324, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245250

RESUMO

Although dopamine replacement therapy remains a core component of Parkinson's disease treatment, the onset of motor fluctuations and dyskinetic movements might require a range of medical and surgical approaches from a multidisciplinary team, and important new approaches in the delivery of dopamine replacement are becoming available. The more challenging, wide range of non-motor symptoms can also have a major impact on the quality of life of a patient with Parkinson's disease, and requires careful multidisciplinary management using evidence-based knowledge, as well as appropriately tailored strategies according to the individual patient's needs. Disease-modifying therapies are urgently needed to prevent the development of the most disabling refractory symptoms, including gait and balance difficulties, cognitive impairment and dementia, and speech and swallowing impairments. In the third paper in this Series, we present the latest evidence supporting the optimal treatment of Parkinson's disease, and describe an expert approach to many aspects of treatment choice where an evidence base is insufficient.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Dopamina , Qualidade de Vida/psicologia , Seleção de Pacientes
2.
Mov Disord ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38925541

RESUMO

Traditional drug development in Parkinson's disease (PD) faces significant challenges because of its protracted timeline and high costs. In response, innovative master protocols are emerging and designed to address multiple research questions within a single overarching protocol. These trials may offer advantages such as increased efficiency, agility in adding new treatment arms, and potential cost savings. However, they also present organizational, methodological, funding, regulatory, and sponsorship challenges. We review the potential of master protocols, focusing on platform trials, for disease modifying therapies in PD. These trials share a common control group and allow for the termination or addition of treatment arms during a trial with non-predetermined end. Specific issues exist for a platform trial in the PD field considering the heterogeneity of patients in terms of phenotype, genotype and staging, the confounding effects of symptomatic treatments, and the choice of outcome measures with no consensus on a non-clinical biomarker to serve as a surrogate and the slowness of PD progression. We illustrate these aspects using the examples of the main PD platform trials currently in development with each one targeting distinct goals, populations, and outcomes. Overall, platform trials hold promise in expediting the evaluation of potential therapies for PD. However, it remains to be proven whether these theoretical benefits will translate into increased production of high-quality trial data. Success also depends on the willingness of pharmaceutical companies to engage in such trials and whether this approach will ultimately hasten the identification and licensing of effective disease-modifying drugs. © 2024 International Parkinson and Movement Disorder Society.

3.
Brain ; 146(7): 2717-2722, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36856727

RESUMO

An increase in the efficiency of clinical trial conduct has been successfully demonstrated in the oncology field, by the use of multi-arm, multi-stage trials allowing the evaluation of multiple therapeutic candidates simultaneously, and seamless recruitment to phase 3 for those candidates passing an interim signal of efficacy. Replicating this complex innovative trial design in diseases such as Parkinson's disease is appealing, but in addition to the challenges associated with any trial assessing a single potentially disease modifying intervention in Parkinson's disease, a multi-arm platform trial must also specifically consider the heterogeneous nature of the disease, alongside the desire to potentially test multiple treatments with different mechanisms of action. In a multi-arm trial, there is a need to appropriately stratify treatment arms to ensure each are comparable with a shared placebo/standard of care arm; however, in Parkinson's disease there may be a preference to enrich an arm with a subgroup of patients that may be most likely to respond to a specific treatment approach. The solution to this conundrum lies in having clearly defined criteria for inclusion in each treatment arm as well as an analysis plan that takes account of predefined subgroups of interest, alongside evaluating the impact of each treatment on the broader population of Parkinson's disease patients. Beyond this, there must be robust processes of treatment selection, and consensus derived measures to confirm target engagement and interim assessments of efficacy, as well as consideration of the infrastructure needed to support recruitment, and the long-term funding and sustainability of the platform. This has to incorporate the diverse priorities of clinicians, triallists, regulatory authorities and above all the views of people with Parkinson's disease.


Assuntos
COVID-19 , Doença de Parkinson , Humanos
4.
Ann Neurol ; 91(3): 424-435, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34984729

RESUMO

OBJECTIVE: This study was undertaken to compare the rate of change in cognition between glucocerebrosidase (GBA) mutation carriers and noncarriers with and without subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson disease. METHODS: Clinical and genetic data from 12 datasets were examined. Global cognition was assessed using the Mattis Dementia Rating Scale (MDRS). Subjects were examined for mutations in GBA and categorized as GBA carriers with or without DBS (GBA+DBS+, GBA+DBS-), and noncarriers with or without DBS (GBA-DBS+, GBA-DBS-). GBA mutation carriers were subcategorized according to mutation severity (risk variant, mild, severe). Linear mixed modeling was used to compare rate of change in MDRS scores over time among the groups according to GBA and DBS status and then according to GBA severity and DBS status. RESULTS: Data were available for 366 subjects (58 GBA+DBS+, 82 GBA+DBS-, 98 GBA-DBS+, and 128 GBA-DBS- subjects), who were longitudinally followed (range = 36-60 months after surgery). Using the MDRS, GBA+DBS+ subjects declined on average 2.02 points/yr more than GBA-DBS- subjects (95% confidence interval [CI] = -2.35 to -1.69), 1.71 points/yr more than GBA+DBS- subjects (95% CI = -2.14 to -1.28), and 1.49 points/yr more than GBA-DBS+ subjects (95% CI = -1.80 to -1.18). INTERPRETATION: Although not randomized, this composite analysis suggests that the combined effects of GBA mutations and STN-DBS negatively impact cognition. We advise that DBS candidates be screened for GBA mutations as part of the presurgical decision-making process. We advise that GBA mutation carriers be counseled regarding potential risks associated with STN-DBS so that alternative options may be considered. ANN NEUROL 2022;91:424-435.


Assuntos
Cognição/fisiologia , Estimulação Encefálica Profunda/métodos , Glucosilceramidase/genética , Heterozigoto , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiopatologia , Idoso , Bases de Dados Factuais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Testes Neuropsicológicos , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Doença de Parkinson/psicologia
5.
Brain ; 145(12): 4398-4408, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-35903017

RESUMO

Disease-modifying treatments are currently being trialled in multiple system atrophy. Approaches based solely on clinical measures are challenged by heterogeneity of phenotype and pathogenic complexity. Neurofilament light chain protein has been explored as a reliable biomarker in several neurodegenerative disorders but data on multiple system atrophy have been limited. Therefore, neurofilament light chain is not yet routinely used as an outcome measure in multiple system atrophy. We aimed to comprehensively investigate the role and dynamics of neurofilament light chain in multiple system atrophy combined with cross-sectional and longitudinal clinical and imaging scales and for subject trial selection. In this cohort study, we recruited cross-sectional and longitudinal cases in a multicentre European set-up. Plasma and CSF neurofilament light chain concentrations were measured at baseline from 212 multiple system atrophy cases, annually for a mean period of 2 years in 44 multiple system atrophy patients in conjunction with clinical, neuropsychological and MRI brain assessments. Baseline neurofilament light chain characteristics were compared between groups. Cox regression was used to assess survival; receiver operating characteristic analysis to assess the ability of neurofilament light chain to distinguish between multiple system atrophy patients and healthy controls. Multivariate linear mixed-effects models were used to analyse longitudinal neurofilament light chain changes and correlated with clinical and imaging parameters. Polynomial models were used to determine the differential trajectories of neurofilament light chain in multiple system atrophy. We estimated sample sizes for trials aiming to decrease neurofilament light chain levels. We show that in multiple system atrophy, baseline plasma neurofilament light chain levels were better predictors of clinical progression, survival and degree of brain atrophy than the neurofilament light chain rate of change. Comparative analysis of multiple system atrophy progression over the course of disease, using plasma neurofilament light chain and clinical rating scales, indicated that neurofilament light chain levels rise as the motor symptoms progress, followed by deceleration in advanced stages. Sample size prediction suggested that significantly lower trial participant numbers would be needed to demonstrate treatment effects when incorporating plasma neurofilament light chain values into multiple system atrophy clinical trials in comparison to clinical measures alone. In conclusion, neurofilament light chain correlates with clinical disease severity, progression and prognosis in multiple system atrophy. Combined with clinical and imaging analysis, neurofilament light chain can inform patient stratification and serve as a reliable biomarker of treatment response in future multiple system atrophy trials of putative disease-modifying agents.


Assuntos
Atrofia de Múltiplos Sistemas , Humanos , Estudos de Coortes , Estudos Transversais , Filamentos Intermediários , Proteínas de Neurofilamentos , Biomarcadores , Progressão da Doença
6.
Mov Disord ; 37(7): 1360-1374, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35791767

RESUMO

BACKGROUND AND PURPOSE: This update of the treatment guidelines was commissioned by the European Academy of Neurology and the European section of the Movement Disorder Society. Although these treatments are initiated usually in specialized centers, the general neurologist should know the therapies and their place in the treatment pathway. METHODS: Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology was used to assess the spectrum of approved interventions including deep brain stimulation (DBS) or brain lesioning with different techniques (radiofrequency thermocoagulation, radiosurgery, magnetic resonance imaging-guided focused ultrasound surgery [MRgFUS] of the following targets: subthalamic nucleus [STN], ventrolateral thalamus, and pallidum internum [GPi]). Continuous delivery of medication subcutaneously (apomorphine pump) or through percutaneous ileostomy (intrajejunal levodopa/carbidopa pump [LCIG]) was also included. Changes in motor features, health-related quality of life (QoL), adverse effects, and further outcome parameters were evaluated. Recommendations were based on high-class evidence and graded in three gradations. If only lower class evidence was available but the topic was felt to be of high importance, clinical consensus of the guideline task force was gathered. RESULTS: Two research questions have been answered with eight recommendations and five clinical consensus statements. Invasive therapies are reserved for specific patient groups and clinical situations mostly in the advanced stage of Parkinson's disease (PD). Interventions may be considered only for special patient profiles, which are mentioned in the text. Therapy effects are reported as change compared with current medical treatment. STN-DBS is the best-studied intervention for advanced PD with fluctuations not satisfactorily controlled with oral medications; it improves motor symptoms and QoL, and treatment should be offered to eligible patients. GPi-DBS can also be offered. For early PD with early fluctuations, STN-DBS is likely to improve motor symptoms, and QoL and can be offered. DBS should not be offered to people with early PD without fluctuations. LCIG and an apomorphine pump can be considered for advanced PD with fluctuations not sufficiently managed with oral treatments. Unilateral MRgFUS of the STN can be considered for distinctly unilateral PD within registries. Clinical consensus was reached for the following statements: Radiosurgery with gamma radiation cannot be recommended, unilateral radiofrequency thermocoagulation of the pallidum for advanced PD with treatment-resistant fluctuations and unilateral radiofrequency thermocoagulation of the thalamus for resistant tremor can be recommended if other options are not available, unilateral MRgFUS of the thalamus for medication-resistant tremor of PD can be considered only within registries, and unilateral MRgFUS of the pallidum is not recommended. CONCLUSIONS: Evidence for invasive therapies in PD is heterogeneous. Only some of these therapies have a strong scientific basis. They differ in their profile of effects and have been tested only for specific patient groups. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Neurologia , Doença de Parkinson , Apomorfina/uso terapêutico , Estimulação Encefálica Profunda/métodos , Humanos , Doença de Parkinson/tratamento farmacológico , Qualidade de Vida , Tremor/terapia
7.
Eur J Neurol ; 29(9): 2580-2595, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35791766

RESUMO

BACKGROUND AND PURPOSE: This update of the treatment guidelines was commissioned by the European Academy of Neurology and the European section of the Movement Disorder Society. Although these treatments are initiated usually in specialized centers, the general neurologist and general practitioners taking care of PD patients should know the therapies and their place in the treatment pathway. METHODS: Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology was used to assess the spectrum of approved interventions including deep brain stimulation (DBS) or brain lesioning with different techniques (radiofrequency thermocoagulation, radiosurgery, magnetic resonance imaging-guided focused ultrasound surgery [MRgFUS] of the following targets: subthalamic nucleus [STN], ventrolateral thalamus, and pallidum internum [GPi]). Continuous delivery of medication subcutaneously (apomorphine pump) or through percutaneous ileostomy (intrajejunal levodopa/carbidopa pump [LCIG]) was also included. Changes in motor features, health-related quality of life (QoL), adverse effects, and further outcome parameters were evaluated. Recommendations were based on high-class evidence and graded in three gradations. If only lower class evidence was available but the topic was felt to be of high importance, clinical consensus of the guideline task force was gathered. RESULTS: Two research questions have been answered with eight recommendations and five clinical consensus statements. Invasive therapies are reserved for specific patient groups and clinical situations mostly in the advanced stage of Parkinson's disease (PD). Interventions may be considered only for special patient profiles, which are mentioned in the text. Therapy effects are reported as change compared with current medical treatment. STN-DBS is the best-studied intervention for advanced PD with fluctuations not satisfactorily controlled with oral medications; it improves motor symptoms and QoL, and treatment should be offered to eligible patients. GPi-DBS can also be offered. For early PD with early fluctuations, STN-DBS is likely to improve motor symptoms, and QoL and can be offered. DBS should not be offered to people with early PD without fluctuations. LCIG and an apomorphine pump can be considered for advanced PD with fluctuations not sufficiently managed with oral treatments. Unilateral MRgFUS of the STN can be considered for distinctly unilateral PD within registries. Clinical consensus was reached for the following statements: Radiosurgery with gamma radiation cannot be recommended, unilateral radiofrequency thermocoagulation of the pallidum for advanced PD with treatment-resistant fluctuations and unilateral radiofrequency thermocoagulation of the thalamus for resistant tremor can be recommended if other options are not available, unilateral MRgFUS of the thalamus for medication-resistant tremor of PD can be considered only within registries, and unilateral MRgFUS of the pallidum is not recommended. CONCLUSIONS: Evidence for invasive therapies in PD is heterogeneous. Only some of these therapies have a strong scientific basis. They differ in their profile of effects and have been tested only for specific patient groups.


Assuntos
Estimulação Encefálica Profunda , Neurologia , Doença de Parkinson , Apomorfina/uso terapêutico , Estimulação Encefálica Profunda/métodos , Humanos , Doença de Parkinson/tratamento farmacológico , Qualidade de Vida , Tremor
8.
Brain ; 144(3): 781-788, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33521808

RESUMO

Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are related conditions that are associated with cholinergic system dysfunction. Dysfunction of the nucleus basalis of Meynert (NBM), a basal forebrain structure that provides the dominant source of cortical cholinergic innervation, has been implicated in the pathogenesis of both PDD and DLB. Here we leverage the temporal resolution of magnetoencephalography with the spatial resolution of MRI tractography to explore the intersection of functional and structural connectivity of the NBM in a unique cohort of PDD and DLB patients undergoing deep brain stimulation of this structure. We observe that NBM-cortical structural and functional connectivity correlate within spatially and spectrally segregated networks including: (i) a beta band network to supplementary motor area, where activity in this region was found to drive activity in the NBM; (ii) a delta/theta band network to medial temporal lobe structures encompassing the parahippocampal gyrus; and (iii) a delta/theta band network to visual areas including lingual gyrus. These findings reveal functional networks of the NBM that are likely to subserve important roles in motor control, memory and visual function, respectively. Furthermore, they motivate future studies aimed at disentangling network contribution to disease phenotype.


Assuntos
Núcleo Basal de Meynert/fisiopatologia , Córtex Cerebral/fisiopatologia , Doença por Corpos de Lewy/fisiopatologia , Vias Neurais/fisiopatologia , Doença de Parkinson/fisiopatologia , Estimulação Encefálica Profunda , Imagem de Tensor de Difusão , Humanos , Magnetoencefalografia , Rede Nervosa/fisiopatologia
9.
Brain ; 143(10): 3067-3076, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33011770

RESUMO

The elevated risk of Parkinson's disease in patients with diabetes might be mitigated depending on the type of drugs prescribed to treat diabetes. Population data for risk of Parkinson's disease in users of the newer types of drugs used in diabetes are scarce. We compared the risk of Parkinson's disease in patients with diabetes exposed to thiazolidinediones (glitazones), glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase 4 (DPP4) inhibitors, with the risk of Parkinson's disease of users of any other oral glucose lowering drugs. A population-based, longitudinal, cohort study was conducted using historic primary care data from The Health Improvement Network. Patients with a diagnosis of diabetes and a minimum of two prescriptions for diabetes medications between January 2006 and January 2019 were included in our study. The primary outcome was the first recording of a diagnosis of Parkinson's disease after the index date, identified from clinical records. We compared the risk of Parkinson's disease in individuals treated with glitazones or DPP4 inhibitors and/or GLP-1 receptor agonists to individuals treated with other antidiabetic agents using a Cox regression with inverse probability of treatment weighting based on propensity scores. Results were analysed separately for insulin users. Among 100 288 patients [mean age 62.8 years (standard deviation 12.6)], 329 (0.3%) were diagnosed with Parkinson's disease during the median follow-up of 3.33 years. The incidence of Parkinson's disease was 8 per 10 000 person-years in 21 175 patients using glitazones, 5 per 10 000 person-years in 36 897 patients using DPP4 inhibitors and 4 per 10 000 person-years in 10 684 using GLP-1 mimetics, 6861 of whom were prescribed GTZ and/or DPP4 inhibitors prior to using GLP-1 mimetics. Compared with the incidence of Parkinson's disease in the comparison group (10 per 10 000 person-years), adjusted results showed no evidence of any association between the use of glitazones and Parkinson's disease [incidence rate ratio (IRR) 1.17; 95% confidence interval (CI) 0.76-1.63; P = 0.467], but there was strong evidence of an inverse association between use of DPP4 inhibitors and GLP-1 mimetics and the onset of Parkinson's disease (IRR 0.64; 95% CI 0.43-0.88; P < 0.01 and IRR 0.38; 95% CI 0.17-0.60; P < 0.01, respectively). Results for insulin users were in the same direction, but the overall size of this group was small. The incidence of Parkinson's disease in patients diagnosed with diabetes varies substantially depending on the treatment for diabetes received. The use of DPP4 inhibitors and/or GLP-1 mimetics is associated with a lower rate of Parkinson's disease compared to the use of other oral antidiabetic drugs.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/efeitos adversos , Doença de Parkinson/epidemiologia , Idoso , Estudos de Coortes , Diabetes Mellitus Tipo 2/diagnóstico , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Inibidores da Dipeptidil Peptidase IV/efeitos adversos , Feminino , Peptídeo 1 Semelhante ao Glucagon/agonistas , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico , Fatores de Risco , Reino Unido/epidemiologia
10.
Neuroimage ; 223: 117356, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32916287

RESUMO

This study offers a novel and efficient measure based on a higher order version of autocorrelative signal memory that can identify nonlinearities in a single time series. The suggested method was applied to simultaneously recorded subthalamic nucleus (STN) local field potentials (LFP) and magnetoencephalography (MEG) from fourteen Parkinson's Disease (PD) patients who underwent surgery for deep brain stimulation. Recordings were obtained during rest for both OFF and ON dopaminergic medication states. We analyzed the bilateral LFP channels that had the maximum beta power in the OFF state and the cortical sources that had the maximum coherence with the selected LFP channels in the alpha band. Our findings revealed the inherent nonlinearity in the PD data as subcortical high beta (20-30 Hz) band and cortical alpha (8-12 Hz) band activities. While the former was discernible without medication (p=0.015), the latter was induced upon the dopaminergic medication (p<6.10-4). The degree of subthalamic nonlinearity was correlated with contralateral tremor severity (r=0.45, p=0.02). Conversely, for the cortical signals nonlinearity was present for the ON medication state with a peak in the alpha band and correlated with contralateral akinesia and rigidity (r=0.46, p=0.02). This correlation appeared to be independent from that of alpha power and the two measures combined explained 34 % of the variance in contralateral akinesia scores. Our findings suggest that particular frequency bands and brain regions display nonlinear features closely associated with distinct motor symptoms and functions.


Assuntos
Mapeamento Encefálico/métodos , Ondas Encefálicas , Córtex Cerebral/fisiopatologia , Magnetoencefalografia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador
11.
Neuroimage ; 221: 117184, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32711059

RESUMO

Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are two related diseases which can be difficult to distinguish. There is no objective biomarker which can reliably differentiate between them. The synergistic combination of electrophysiological and neuroimaging approaches is a powerful method for interrogation of functional brain networks in vivo. We recorded bilateral local field potentials (LFPs) from the nucleus basalis of Meynert (NBM) and the internal globus pallidus (GPi) with simultaneous cortical magnetoencephalography (MEG) in six PDD and five DLB patients undergoing surgery for deep brain stimulation (DBS) to look for differences in underlying resting-state network pathophysiology. In both patient groups we observed spectral peaks in the theta (2-8 Hz) band in both the NBM and the GPi. Furthermore, both the NBM and the GPi exhibited similar spatial and spectral patterns of coupling with the cortex in the two disease states. Specifically, we report two distinct coherent networks between the NBM/GPi and cortical regions: (1) a theta band (2-8 Hz) network linking the NBM/GPi to temporal cortical regions, and (2) a beta band (13-22 Hz) network coupling the NBM/GPi to sensorimotor areas. We also found differences between the two disease groups: oscillatory power in the low beta (13-22Hz) band was significantly higher in the globus pallidus in PDD patients compared to DLB, and coherence in the high beta (22-35Hz) band between the globus pallidus and lateral sensorimotor cortex was significantly higher in DLB patients compared to PDD. Overall, our findings reveal coherent networks of the NBM/GPi region that are common to both DLB and PDD. Although the neurophysiological differences between the two conditions in this study are confounded by systematic differences in DBS lead trajectories and motor symptom severity, they lend support to the hypothesis that DLB and PDD, though closely related, are distinguishable from a neurophysiological perspective.


Assuntos
Núcleo Basal de Meynert/fisiopatologia , Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiopatologia , Conectoma , Demência/fisiopatologia , Globo Pálido/fisiopatologia , Doença por Corpos de Lewy/fisiopatologia , Magnetoencefalografia , Rede Nervosa/fisiopatologia , Doença de Parkinson/fisiopatologia , Idoso , Núcleo Basal de Meynert/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Demência/diagnóstico por imagem , Feminino , Globo Pálido/diagnóstico por imagem , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem
12.
Brain ; 142(8): 2417-2431, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31219504

RESUMO

Subthalamic nucleus deep brain stimulation is an effective treatment for advanced Parkinson's disease; however, its therapeutic mechanism is unclear. Previous modelling of functional MRI data has suggested that deep brain stimulation has modulatory effects on a number of basal ganglia pathways. This work uses an enhanced data collection protocol to collect rare functional MRI data in patients with subthalamic nucleus deep brain stimulation. Eleven patients with Parkinson's disease and subthalamic nucleus deep brain stimulation underwent functional MRI at rest and during a movement task; once with active deep brain stimulation, and once with deep brain stimulation switched off. Dynamic causal modelling and Bayesian model selection were first used to compare a series of plausible biophysical models of the cortico-basal ganglia circuit that could explain the functional MRI activity at rest in an attempt to reproduce and extend the findings from our previous work. General linear modelling of the movement task functional MRI data revealed deep brain stimulation-associated signal increases in the primary motor and cerebellar cortices. Given the significance of the cerebellum in voluntary movement, we then built a more complete model of the motor system by including cerebellar-basal ganglia interactions, and compared the modulatory effects deep brain stimulation had on different circuit components during the movement task and again using the resting state data. Consistent with previous results from our independent cohort, model comparison found that the rest data were best explained by deep brain stimulation-induced increased (effective) connectivity of the cortico-striatal, thalamo-cortical and direct pathway and reduced coupling of subthalamic nucleus afferent and efferent connections. No changes in cerebellar connectivity were identified at rest. In contrast, during the movement task, there was functional recruitment of subcortical-cerebellar pathways, which were additionally modulated by deep brain stimulation, as well as modulation of local (intrinsic) cortical and cerebellar circuits. This work provides in vivo evidence for the modulatory effects of subthalamic nucleus deep brain stimulation on effective connectivity within the cortico-basal ganglia loops at rest, as well as further modulations in the cortico-cerebellar motor system during voluntary movement. We propose that deep brain stimulation has both behaviour-independent effects on basal ganglia connectivity, as well as behaviour-dependent modulatory effects.


Assuntos
Encéfalo/fisiopatologia , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Desempenho Psicomotor/fisiologia , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Núcleo Subtalâmico/fisiopatologia
15.
Mov Disord ; 33(1): 117-127, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29082547

RESUMO

BACKGROUND: 18 F-dopa PET measuring aromatic l-amino acid decarboxylase activity is regarded as the gold standard for evaluating dopaminergic function in Parkinson's disease. Radioligands for dopamine transporters are also used in clinical trials and for confirming PD diagnosis. Currently, it is not clear which imaging marker is more reliable for assessing clinical severity and rate of progression. The objective of this study was to directly compare 18 F-dopa with the highly selective dopamine transporter radioligand 11 C-PE2I for the assessment of motor severity and rate of progression in PD. METHODS: Thirty-three mild-moderate PD patients underwent 18 F-dopa and 11 C-PE2I PET at baseline. Twenty-three were followed up for 18.8 ± 3.4 months. RESULTS: Standard multiple regression at baseline indicated that 11 C-PE2I BPND predicted UPDRS-III and bradykinesia-rigidity scores (P < 0.05), whereas 18 F-dopa Ki did not make significant unique explanatory contributions. Voxel-wise analysis showed negative correlations between 11 C-PE2I BPND and motor severity across the whole striatum bilaterally. 18 F-Dopa Ki clusters were restricted to the most affected putamen and caudate. Longitudinally, negative correlations were found between striatal Δ11 C-PE2I BPND , ΔUPDRS-III, and Δbradykinesia-rigidity, whereas no significant associations were found for Δ18 F-dopa Ki . One cluster in the most affected putamen was identified in the longitudinal voxel-wise analysis showing a negative relationship between Δ11 C-PE2I BPND and Δbradykinesia-rigidity. CONCLUSIONS: Striatal 11 C-PE2I appears to show greater sensitivity for detecting differences in motor severity than 18 F-dopa. Furthermore, dopamine transporter decline is closely associated with motor progression over time, whereas no such relationship was found with aromatic l-amino acid decarboxylase. 11 C-PE2I may be more effective for evaluating the efficacy of neuroprotective treatments in PD. © 2017 International Parkinson and Movement Disorder Society.


Assuntos
Encéfalo/diagnóstico por imagem , Di-Hidroxifenilalanina/farmacocinética , Fluordesoxiglucose F18/farmacocinética , Nortropanos/farmacocinética , Doença de Parkinson/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Encéfalo/efeitos dos fármacos , Mapeamento Encefálico , Progressão da Doença , Dopaminérgicos/farmacocinética , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/fisiopatologia , Índice de Gravidade de Doença
18.
Cereb Cortex ; 27(1): 54-67, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28316456

RESUMO

Deep brain stimulation of the pedunculopontine nucleus and surrounding region (PPNR) is a novel treatment strategy for gait freezing in Parkinson's disease (PD). However, clinical results have been variable, in part because of the paucity of functional information that might help guide selection of the optimal surgical target. In this study, we use simultaneous magnetoencephalography and local field recordings from the PPNR in seven PD patients, to characterize functional connectivity with distant brain areas at rest. The PPNR was preferentially coupled to brainstem and cingulate regions in the alpha frequency (8-12 Hz) band and to the medial motor strip and neighboring areas in the beta (18-33 Hz) band. The distribution of coupling also depended on the vertical distance of the electrode from the pontomesencephalic line: most effects being greatest in the middle PPNR, which may correspond to the caudal pars dissipata of the pedunculopontine nucleus. These observations confirm the crucial position of the PPNR as a functional node between cortical areas such as the cingulate/ medial motor strip and other brainstem nuclei, particularly in the dorsal pons. In particular they suggest a special role for the middle PPNR as this has the greatest functional connectivity with other brain regions.


Assuntos
Encéfalo/fisiopatologia , Doença de Parkinson/fisiopatologia , Núcleo Tegmental Pedunculopontino/fisiopatologia , Idoso , Ritmo alfa , Ritmo beta , Giro do Cíngulo/fisiopatologia , Humanos , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiopatologia , Vias Neurais/fisiopatologia
19.
Brain ; 139(Pt 5): 1482-96, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27017189

RESUMO

Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus-cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the possibility that cortical connectivity with the subthalamic nucleus in the high and low beta bands may reflect coupling mediated predominantly by the hyperdirect and indirect pathways to subthalamic nucleus, respectively, and that subthalamic nucleus deep brain stimulation predominantly suppresses the former. Yet only the change in strength of local subthalamic nucleus oscillations correlates with the degree of improvement during deep brain stimulation, compatible with the current view that a strengthened hyperdirect pathway is a prerequisite for locally generated beta activity but that it is the severity of the latter that may determine or index motor impairment.


Assuntos
Estimulação Encefálica Profunda , Córtex Motor/fisiologia , Vias Neurais/fisiopatologia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiologia , Adulto , Idoso , Eletrodos Implantados , Feminino , Humanos , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Inibição Neural/fisiologia
20.
Stereotact Funct Neurosurg ; 95(4): 251-258, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28787721

RESUMO

BACKGROUND: Deep brain stimulation (DBS) in patients with severe, refractory Tourette syndrome (TS) has demonstrated promising but variable results thus far. The thalamus and anteromedial globus pallidus internus (amGPi) have been the most commonly stimulated sites within the cortico-striato thalamic circuit, but an optimal target is yet to be elucidated. OBJECTIVES: This study of 15 patients with long-term amGPi DBS for severe TS investigated whether a specific anatomical site within the amGPi correlated with optimal clinical outcome for the measures of tics, obsessive compulsive behaviour (OCB), and mood. METHODS: Validated clinical assessments were used to measure tics, OCB, quality of life, anxiety, and depression before DBS and at the latest follow-up (17-82 months). Electric field simulations were created for each patient using information on electrode location and individual stimulation parameters. A subsequent regression analysis correlated these patient-specific simulations to percentage changes in outcome measures in order to identify any significant voxels related to clinical improvement. RESULTS: A region within the ventral limbic GPi, specifically on the medial medullary lamina in the pallidum at the level of the AC-PC, was significantly associated with improved tics but not mood or OCB outcome. CONCLUSIONS: This study adds further support to the application of DBS in a tic-related network, though factors such as patient sample size and clinical heterogeneity remain as limitations and replication is required.


Assuntos
Estimulação Encefálica Profunda/métodos , Globo Pálido/diagnóstico por imagem , Síndrome de Tourette/diagnóstico por imagem , Síndrome de Tourette/terapia , Adolescente , Adulto , Estimulação Encefálica Profunda/normas , Feminino , Seguimentos , Globo Pálido/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA