Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 765: 144295, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33412379

RESUMO

Cover cropping is beneficial for reducing soil erosion and nutrient losses, but there are conflicting reports on how cover cropping affects emissions of nitrous oxide (N2O), a potent greenhouse gas. In this study, we measured N2O fluxes over a full year in Illinois corn plots with and without rye cover crop. We compared these year-round measurements to N2O emissions predicted by the Intergovernmental Panel on Climate Change (IPCC) Tier 1 equation and the Denitrification-Decomposition (DNDC) model. In addition, we measured potential denitrification and N2O production rates. The field measurements showed typical N2O peaks shortly after fertilizer application, as well as a significant late-winter peak. Cover cropping significantly reduced all peak N2O fluxes, with decreases ranging from 39 to 95%. Neither model was able to accurately predict annual N2O fluxes or the decrease in N2O emissions from cover-cropped fields. In contrast to field measurements, lab assays found that cover cropping significantly increased potential denitrification by 90-127% and potential N2O production by 54-106%. The rye cover-cropped plots had lower soil nitrate and higher soil carbon. When limiting nitrate and excess carbon were provided in lab assays, the proportion of N2O resulting from denitrification decreased. These results suggest that the discrepancy between the observed decrease in field N2O emissions and the increase in denitrification potential may be due to the difference in available nutrients between the field and laboratory measurements. Overall, these results suggest the importance of late-winter peaks in N2O emissions and the potential of rye cover cropping to reduce N2O emissions from agricultural fields.


Assuntos
Desnitrificação , Secale , Agricultura , Fertilizantes/análise , Illinois , Óxido Nitroso/análise , Solo
2.
Sci Total Environ ; 646: 872-879, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30064113

RESUMO

Due to the contributions of nitrous oxide (N2O) to global climate change and stratospheric ozone destruction, it is important to understand how climate and agricultural management affect N2O emissions. Although the process-based Denitrification Decomposition (DNDC) model is often used for quantifying emissions of N2O, the accuracy of these predictions remains in question, and it is not clear which input variables, environmental or field management, have the greatest effect on model performance. In this study, DNDC was evaluated for prediction of N2O fluxes from two climatically-different corn-field sites in the United States (a Colorado irrigated field and a Minnesota rainfed field). Besides climate, these sites offer the additional advantage that measurements are available for multiple field management practices, including fertilizer application, tillage, and crop rotation. This evaluation found that DNDC did not consistently, correctly predict daily-scale N2O fluxes. Cumulative growing season N2O fluxes were significantly under-predicted in Colorado and were both under- and over-predicted in Minnesota. Model calibration of four soil input parameters did not significantly improve N2O emission predictions at either site or time scale. Modeled and measured N2O fluxes and model error were all strongly correlated with precipitation. Over-predictions of N2O fluxes were associated with heavy precipitation and high modeled denitrification. Based on our results, model improvements to decrease model error for corn cropping systems in temperate climate zones should focus on better accounting for the effects of precipitation on denitrification. Despite discrepancies in daily and cumulative growing season N2O fluxes, DNDC correctly identified the only field management (fertilizer application rate) that significantly influenced the measured N2O fluxes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA