Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(28): e2118101119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35787045

RESUMO

The fluctuating hydrogen bridge bonded network of liquid water at ambient conditions entails a varied ensemble of the underlying constituting H2O molecular moieties. This is mirrored in a manifold of the H2O molecular potentials. Subnatural line width resonant inelastic X-ray scattering allowed us to quantify the manifold of molecular potential energy surfaces along the H2O symmetric normal mode and the local asymmetric O-H bond coordinate up to 1 and 1.5 Å, respectively. The comparison of the single H2O molecular potentials and spectroscopic signatures with the ambient conditions liquid phase H2O molecular potentials is done on various levels. In the gas phase, first principles, Morse potentials, and stepwise harmonic potential reconstruction have been employed and benchmarked. In the liquid phase the determination of the potential energy manifold along the local asymmetric O-H bond coordinate from resonant inelastic X-ray scattering via the bound state oxygen 1s to [Formula: see text] resonance is treated within these frameworks. The potential energy surface manifold along the symmetric stretch from resonant inelastic X-ray scattering via the oxygen 1s to [Formula: see text] resonance is based on stepwise harmonic reconstruction. We find in liquid water at ambient conditions H2O molecular potentials ranging from the weak interaction limit to strongly distorted potentials which are put into perspective to established parameters, i.e., intermolecular O-H, H-H, and O-O correlation lengths from neutron scattering.


Assuntos
Hidrogênio , Água , Técnicas de Química Analítica , Oxigênio/química , Água/química , Raios X
2.
J Am Chem Soc ; 146(20): 14000-14011, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38713061

RESUMO

C-H bond activation reactions with transition metals typically proceed via the formation of alkane σ-complexes, where an alkane C-H σ-bond binds to the metal. Due to the weak nature of metal-alkane bonds, σ-complexes are challenging to characterize experimentally. Here, we establish the complete pathways of photochemical formation of the model σ-complex Cr(CO)5-alkane from Cr(CO)6 in octane solution and characterize the nature of its metal-ligand bonding interactions. Using femtosecond optical absorption spectroscopy, we find photoinduced CO dissociation from Cr(CO)6 to occur within the 100 fs time resolution of the experiment. Rapid geminate recombination by a fraction of molecules is found to occur with a time constant of 150 fs. The formation of bare Cr(CO)5 in its singlet ground state is followed by complexation of an octane molecule from solution with a time constant of 8.2 ps. Picosecond X-ray absorption spectroscopy at the Cr L-edge and O K-edge provides unique information on the electronic structure of the Cr(CO)5-alkane σ-complex from both the metal and ligand perspectives. Based on clear experimental observables, we find substantial destabilization of the lowest unoccupied molecular orbital upon coordination of the C-H bond to the undercoordinated Cr center in the Cr(CO)5-alkane σ-complex, and we define this as a general, orbital-based descriptor of the metal-alkane bond. Our study demonstrates the value of combining optical and X-ray spectroscopic methods as complementary tools to study the stability and reactivity of alkane σ-complexes in their role as the decisive intermediates in C-H bond activation reactions.

3.
Phys Chem Chem Phys ; 26(3): 2304-2311, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165713

RESUMO

The electronic structure of the fumarate, maleate, and succinate dianions in the context of their stability is determined in a joint experimental and computational study with X-ray absorption spectroscopy and resonant inelastic X-ray scattering at the O K-edge. The study reveals differences in the electronic states and molecular orbitals of the three molecules. In particular, maleate has a non-degenerate oxygen core-orbital with an energy difference of approximately 0.15 eV, visible in a two peak structure in XAS. Polarization-dependent RIXS provides information on the orientation of the occupied valence molecular orbitals with respect to the carboxylate group plane and shows a gradually increasing energy gap between the HOMO and excited π* LUMO from fumarate to maleate to succinate. We also demonstrate the energy excitation dependence of the RIXS spectra of maleate, with the total inelastic RIXS profile shifting towards higher energy loss as the detuning is increased from negative to positive values. Our findings show that maleate is less stable than fumarate and succinate due to the presence of electronic density on its HOMO orbital on the CC bond between carboxylate groups, which can lead to weaker bonding of maleate with molecules or ions.

4.
Inorg Chem ; 61(27): 10321-10328, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35764301

RESUMO

Chelating agents are an integral part of transition metal complex chemistry with broad biological and industrial relevance. The hexadentate chelating agent ethylenediaminetetraacetic acid (EDTA) has the capability to bind to metal ions at its two nitrogen and four of its carboxylate oxygen sites. We use resonant inelastic X-ray scattering at the 1s absorption edge of the aforementioned elements in EDTA and the iron(III)-EDTA complex to investigate the impact of the metal-ligand bond formation on the electronic structure of EDTA. Frontier orbital distortions, occupation changes, and energy shifts through metal-ligand bond formation are probed through distinct spectroscopic signatures.


Assuntos
Complexos de Coordenação , Elementos de Transição , Ácido Edético , Compostos Férricos/química , Ligantes , Metais
5.
Phys Chem Chem Phys ; 24(30): 17979-17985, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35737440

RESUMO

Cr(CO)6 was investigated by X-ray absorption spectroscopy. The spectral signature at the metal edge provides information about the back-bonding of the metal in this class of complexes. Among the processes it participates in is ligand substitution in which a carbonyl ligand is ejected through excitation to a metal to ligand charge transfer (MLCT) band. The unsaturated carbonyl Cr(CO)5 is stabilized by solution media in square pyramidal geometry and further reacts with the solvent. Multi-site-specific probing after photoexcitation was used to investigate the ligand substitution photoreaction process which is a common first step in catalytic processes involving metal carbonyls. The data were analysed with the aid of TD-DFT computations for different models of photoproducts and signatures for ligand rearrangement after substitution were found. The rearrangement was found to occur in about 790 ps in agreement with former studies of the photoreaction.

6.
Phys Chem Chem Phys ; 24(12): 7505-7511, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35288726

RESUMO

Free base 5,10,15,20-tetrakis(4-carboxylatophenyl)porphyrin stands for the class of powerful porphyrin photosensitizers for singlet oxygen generation and light-harvesting. The atomic level selectivity of dynamic UV pump - N K-edge probe X-ray absorption spectroscopy in combination with time-dependent density functional theory (TD-DFT) gives direct access to the crucial excited molecular states within the unusual relaxation pathway. The efficient intersystem crossing, that is El-Sayed forbidden and not facilitated by a heavy atom is confirmed to be the result of the long singlet excited state lifetime (Qx 4.9 ns) and thermal effects. Overall, the interplay of stabilization by conservation of angular momenta and vibronic relaxation drive the de-excitation in these chromophores.

7.
Phys Chem Chem Phys ; 24(45): 27819-27826, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36350272

RESUMO

In this work, we investigate the photo-aquation reaction of the ferrocyanide anion with multi-edge picosecond soft X-ray spectroscopy. Combining the information of the iron L-edge with nitrogen and oxygen K-edges, we carry out a complete characterization of the bonding channels in the [Fe(CN)5(H2O)]3- photo-product. We observe clear spectral signatures of covalent bonding between water and the metal, reflecting the mixing of the Fe dz2 orbital with the 3a1 and 4a1 orbitals of H2O. Additional fingerprints related to the symmetry reduction and the resulting loss in orbital degeneracy are also reported. The implications of the elucidated fingerprints in the context of future ultra-fast experiments are also discussed.

8.
Proc Natl Acad Sci U S A ; 116(10): 4058-4063, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782822

RESUMO

The phase diagram of water harbors controversial views on underlying structural properties of its constituting molecular moieties, its fluctuating hydrogen-bonding network, as well as pair-correlation functions. In this work, long energy-range detection of the X-ray absorption allows us to unambiguously calibrate the spectra for water gas, liquid, and ice by the experimental atomic ionization cross-section. In liquid water, we extract the mean value of 1.74 ± 2.1% donated and accepted hydrogen bonds per molecule, pointing to a continuous-distribution model. In addition, resonant inelastic X-ray scattering with unprecedented energy resolution also supports continuous distribution of molecular neighborhoods within liquid water, as do X-ray emission spectra once the femtosecond scattering duration and proton dynamics in resonant X-ray-matter interaction are taken into account. Thus, X-ray spectra of liquid water in ambient conditions can be understood without a two-structure model, whereas the occurrence of nanoscale-length correlations within the continuous distribution remains open.

9.
Angew Chem Int Ed Engl ; 61(27): e202200709, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35325500

RESUMO

Photoacids show a strong increase in acidity in the first electronic excited state, enabling real-time studies of proton transfer in acid-base reactions, proton transport in energy storage devices and biomolecular sensor protein systems. Several explanations have been proposed for what determines photoacidity, ranging from variations in solvation free energy to changes in electronic structure occurring along the four stages of the Förster cycle. Here we use picosecond nitrogen K-edge spectroscopy to monitor the electronic structure changes of the proton donating group in a protonated aromatic amine photoacid in solution upon photoexcitation and subsequent proton transfer dynamics. Probing core-to-valence transitions locally at the amine functional group and with orbital specificity, we clearly reveal pronounced electronic structure, dipole moment and energetic changes on the conjugate photobase side. This result paves the way for a detailed electronic structural characterization of the photoacidity phenomenon.


Assuntos
Aminas , Prótons , Ácidos/química , Eletrônica , Análise Espectral
10.
Soft Matter ; 18(1): 89-96, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34870645

RESUMO

The spontaneous formation of chiral structures offers a variety of liquid crystals (LC) phases that could be further tailored for practical applications. In our work, the characteristic features of spiral ordering in the cholesteric phase of EZL10/10 LC were evaluated. To disclose resonant reflections related to a nanoscale helix pitch, resonant soft X-ray scattering at the carbon K edge was employed. The angular positions of the observed element-specific scattering peaks reveal a half-pitch of the spiral ordering p/2 ≈ 52 nm indicating the full pitch of about 104 nm at room temperature. The broadening of the peaks points to a presence of coherently scattering finite-size domains formed by cholesteric spirals with lengths of about five pitches. No scattering peaks were detectable in the EZL10/10 isotropic phase at higher temperatures. The characteristic lengths extracted from the resonant soft X-ray scattering experiment agree well with the periodicity of the surface "fingerprint" pattern observed in the EZL10/10 cholesteric phase by means of atomic force microscopy. The stability of LC molecules under the incident beam was proven by X-ray absorption spectroscopy in transmission geometry.

11.
Phys Chem Chem Phys ; 23(43): 24765-24772, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34714305

RESUMO

The central moiety of porphyrins is shown to control the charge state of the inner complex and links it by covalent interaction to the peripheral substituents. This link, which enables the versatile functions of porphyrins, is not picked up in the established, reduced four orbital picture [Gouterman, J. Mol. Spectrosc., 1961, 6, 138]. X-ray absorption spectroscopy at the N K-edge with density functional theory approaches gives access to the full electronic structure, in particular the π* manifold beyond the Gouterman orbitals. Systematic variation of the central moiety highlights two linked, governing trends: The ionicity of the porphyrin center increases from the aminic N-H to N-Cu to N-Zn to N-Mg to the iminic N:. At the same time covalency with peripheral substituents increases and compensates the buildup of high charge density at the coordinated nitrogen sites.

12.
Phys Chem Chem Phys ; 22(18): 10335-10342, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32364190

RESUMO

Charge transfer dynamics are of importance in functional materials used in devices ranging from transistors to photovoltaics. The understanding of charge transfer in particular of how fast electrons tunnel away from an excited state and where they end up, is necessary to tailor materials used in devices. We have investigated charge transfer dynamics in different forms of the layered two-dimensional material molybdenum disulphide (MoS2, in single crystal, nanocrystalline particles and crystallites in a reduced graphene oxide network) using core-hole clock spectroscopy. By recording the electrons in the sulphur KLL Auger electron kinetic energy range we have measured the prevalence of localised and delocalised decays from a state created by core excitation using X-rays. We show that breaking the crystal symmetry of the single crystal into either particles or sheets causes the charge transfer from the excited state to occur faster, even more so when incorporating it in a graphene oxide network. The interface between the MoS2 and the reduced graphene oxide forms a Schottky barrier which changes the ratio between local and delocalised decays creating two distinct regions in the charge transfer dependent on the energy of the excited electron. Thereby we show that ultra-fast charge transfer in MoS2 can be tailored, a result which can be used in the design of emergent devices.

13.
Chemistry ; 25(7): 1733-1739, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452789

RESUMO

Excited-state proton transfer (ESPT) is a fundamental process in biomolecular photochemistry, but its underlying mediators often evade direct observation. We identify a distinct pathway for ESPT in aqueous 2-thiopyridone, by employing transient N 1s X-ray absorption spectroscopy and multi-configurational spectrum simulations. Photoexcitations to the singlet S2 and S4 states both relax promptly through intersystem crossing to the triplet T1 state. The T1 state, through its rapid population and near nanosecond lifetime, mediates nitrogen site deprotonation by ESPT in a secondary intersystem crossing to the S0 potential energy surface. This conclusively establishes a dominant ESPT pathway for the system in aqueous solution, which is also compatible with previous measurements in acetonitrile. Thereby, the hitherto open questions of the pathway for ESPT in the compound, including its possible dependence on excitation wavelength and choice of solvent, are resolved.

14.
J Chem Phys ; 150(23): 234301, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31228920

RESUMO

We report on a combined theoretical and experimental study of core-excitation spectra of gas and liquid phase methanol as obtained with the use of X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). The electronic transitions are studied with computational methods that include strict and extended second-order algebraic diagrammatic construction [ADC(2) and ADC(2)-x], restricted active space second-order perturbation theory, and time-dependent density functional theory-providing a complete assignment of the near oxygen K-edge XAS. We show that multimode nuclear dynamics is of crucial importance for explaining the available experimental XAS and RIXS spectra. The multimode nuclear motion was considered in a recently developed "mixed representation" where dissociative states and highly excited vibrational modes are accurately treated with a time-dependent wave packet technique, while the remaining active vibrational modes are described using Franck-Condon amplitudes. Particular attention is paid to the polarization dependence of RIXS and the effects of the isotopic substitution on the RIXS profile in the case of dissociative core-excited states. Our approach predicts the splitting of the 2a″ RIXS peak to be due to an interplay between molecular and pseudo-atomic features arising in the course of transitions between dissociative core- and valence-excited states. The dynamical nature of the splitting of the 2a″ peak in RIXS of liquid methanol near pre-edge core excitation is shown. The theoretical results are in good agreement with our liquid phase measurements and gas phase experimental data available from the literature.

15.
Angew Chem Int Ed Engl ; 58(31): 10742-10746, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31145507

RESUMO

Covalency is found to even out charge separation after photo-oxidation of the metal center in the metal-to-ligand charge-transfer state of an iron photosensitizer. The σ-donation ability of the ligands compensates for the loss of iron 3d electronic charge, thereby upholding the initial metal charge density and preserving the local noble-gas configuration. These findings are enabled through element-specific and orbital-selective time-resolved X-ray absorption spectroscopy at the iron L-edge. Thus, valence orbital populations around the central metal are directly accessible. In conjunction with density functional theory we conclude that the picture of a localized charge-separation is inadequate. However, the unpaired spin density provides a suitable representation of the electron-hole pair associated with the electron-transfer process.

16.
Phys Chem Chem Phys ; 20(44): 27745-27751, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30211412

RESUMO

Understanding and controlling properties of transition metal complexes is a crucial step towards tailoring materials for sustainable energy applications. In a systematic approach, we use resonant inelastic X-ray scattering to study the influence of ligand substitution on the valence electronic structure around an aqueous iron(ii) center. Exchanging cyanide with 2-2'-bipyridine ligands reshapes frontier orbitals in a way that reduces metal 3d charge delocalization onto the ligands. This net decrease of metal-ligand covalency results in lower metal-centered excited state energies in agreement with previously reported excited state dynamics. Furthermore, traces of solvent-effects were found indicating a varying interaction strength of the solvent with ligands of different character. Our results demonstrate how ligand exchange can be exploited to shape frontier orbitals of transition metal complexes in solution-phase chemistry; insights upon which future efforts can built when tailoring the functionality of photoactive systems for light-harvesting applications.

17.
Phys Chem Chem Phys ; 20(21): 14384-14397, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29770402

RESUMO

In this combined theoretical and experimental study we report on an analysis of the resonant inelastic X-ray scattering (RIXS) spectra of gas phase water via the lowest dissociative core-excited state |1s-1O4a11. We focus on the spectral feature near the dissociation limit of the electronic ground state. We show that the narrow atomic-like peak consists of the overlapping contribution from the RIXS channels back to the ground state and to the first valence excited state |1b-114a11 of the molecule. The spectral feature has signatures of ultrafast dissociation (UFD) in the core-excited state, as we show by means of ab initio calculations and time-dependent nuclear wave packet simulations. We show that the electronically elastic RIXS channel gives substantial contribution to the atomic-like resonance due to the strong bond length dependence of the magnitude and orientation of the transition dipole moment. By studying the RIXS for an excitation energy scan over the core-excited state resonance, we can understand and single out the molecular and atomic-like contributions in the decay to the lowest valence-excited state. Our study is complemented by a theoretical discussion of RIXS in the case of isotopically substituted water (HDO and D2O) where the nuclear dynamics is significantly affected by the heavier fragments' mass.

18.
Phys Chem Chem Phys ; 19(47): 32091-32098, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29182178

RESUMO

The valence orbitals of aqueous histidine under basic, neutral and acidic conditions and their X-ray induced transformations have been monitored through N 1s resonant inelastic X-ray scattering. Using density functional ab initio molecular dynamics simulations in the core-hole state within the Z + 1 approximation, core-excitation-induced molecular transformations are quantified. Spectroscopic evidence for a highly directional X-ray-induced local N-H dissociation within the scattering duration is presented for acidic histidine. Our report demonstrates a protonation-state and chemical-environment dependent propensity for a molecular dissociation, which is induced by the absorption of high energy photons. This case study indicates that structural deformations in biomolecules under exposure to ionizing radiation, yielding possible alteration or loss of function, is highly dependent on the physiological state of the molecule upon irradiation.

19.
Phys Chem Chem Phys ; 19(30): 19573-19589, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28352891

RESUMO

In this combined theoretical and experimental study we report a full analysis of the resonant inelastic X-ray scattering (RIXS) spectra of H2O, D2O and HDO. We demonstrate that electronically-elastic RIXS has an inherent capability to map the potential energy surface and to perform vibrational analysis of the electronic ground state in multimode systems. We show that the control and selection of vibrational excitation can be performed by tuning the X-ray frequency across core-excited molecular bands and that this is clearly reflected in the RIXS spectra. Using high level ab initio electronic structure and quantum nuclear wave packet calculations together with high resolution RIXS measurements, we discuss in detail the mode coupling, mode localization and anharmonicity in the studied systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA