Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 97(3): 1045-1087, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28539435

RESUMO

Estrogen receptor alpha (ERα) has been recognized now for several decades as playing a key role in reproduction and exerting functions in numerous nonreproductive tissues. In this review, we attempt to summarize the in vitro studies that are the basis of our current understanding of the mechanisms of action of ERα as a nuclear receptor and the key roles played by its two activation functions (AFs) in its transcriptional activities. We then depict the consequences of the selective inactivation of these AFs in mouse models, focusing on the prominent roles played by ERα in the reproductive tract and in the vascular system. Evidence has accumulated over the two last decades that ERα is also associated with the plasma membrane and activates non-nuclear signaling from this site. These rapid/nongenomic/membrane-initiated steroid signals (MISS) have been characterized in a variety of cell lines, and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS and the generation of mice expressing an ERα protein impeded for membrane localization have begun to unravel the physiological role of MISS in vivo. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators based on the integration of the physiological and pathophysiological roles of MISS actions of estrogens.


Assuntos
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Transdução de Sinais , Animais , Membrana Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Genótipo , Humanos , Camundongos Transgênicos , Fenótipo , Moduladores Seletivos de Receptor Estrogênico/farmacologia
2.
Circ Res ; 127(12): 1473-1487, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33012251

RESUMO

RATIONALE: Tamoxifen prevents the recurrence of breast cancer and is also beneficial against bone demineralization and arterial diseases. It acts as an ER (estrogen receptor) α antagonist in ER-positive breast cancers, whereas it mimics the protective action of 17ß-estradiol in other tissues such as arteries. However, the mechanisms of these tissue-specific actions remain unclear. OBJECTIVE: Here, we tested whether tamoxifen is able to accelerate endothelial healing and analyzed the underlying mechanisms. METHODS AND RESULTS: Using 3 complementary mouse models of carotid artery injury, we demonstrated that both tamoxifen and estradiol accelerated endothelial healing, but only tamoxifen required the presence of the underlying medial smooth muscle cells. Chronic treatment with 17ß-estradiol and tamoxifen elicited differential gene expression profiles in the carotid artery. The use of transgenic mouse models targeting either whole ERα in a cell-specific manner or ERα subfunctions (membrane/extranuclear versus genomic/transcriptional) demonstrated that 17ß-estradiol-induced acceleration of endothelial healing is mediated by membrane ERα in endothelial cells, while the effect of tamoxifen is mediated by the nuclear actions of ERα in smooth muscle cells. CONCLUSIONS: Whereas tamoxifen acts as an antiestrogen and ERα antagonist in breast cancer but also on the membrane ERα of endothelial cells, it accelerates endothelial healing through activation of nuclear ERα in smooth muscle cells, inviting to revisit the mechanisms of action of selective modulation of ERα.


Assuntos
Lesões das Artérias Carótidas/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Receptor alfa de Estrogênio/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Transdução de Sinais , Fatores de Tempo
3.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35270003

RESUMO

Flow-mediated dilation (FMD) of resistance arteries is essential for tissue perfusion but it decreases with ageing. As estrogen receptor alpha (Erα encoded by Esr1), and more precisely membrane ERα, plays an important role in FMD in young mice in a ligand-independent fashion, we evaluated its influence on this arteriolar function in ageing. We first confirmed that in young (6-month-old) mice, FMD of mesenteric resistance arteries was reduced in Esr1-/- (lacking ERα) and C451A-ERα (lacking membrane ERα). In old (24-month-old) mice, FMD was reduced in WT mice compared to young mice, whereas it was not further decreased in Esr1-/- and C451A-ERα mice. Markers of oxidative stress were similarly increased in old WT and C451A-ERα mice. Reduction in oxidative stress with superoxide dismutase plus catalase or Mito-tempo, which reduces mitochondrial superoxide restored FMD to a normal control level in young C451A-ERα mice as well as in old WT mice and old C451A-ERα mice. Estradiol-mediated dilation was absent in old WT mice. We conclude that oxidative stress is a key event in the decline of FMD, and that an early defect in membrane ERα recapitulates phenotypically and functionally ageing of these resistance arteries. The loss of this function could take part in vascular ageing.


Assuntos
Receptor alfa de Estrogênio , Artérias Mesentéricas , Envelhecimento/genética , Animais , Estradiol , Receptor alfa de Estrogênio/genética , Artérias Mesentéricas/fisiologia , Camundongos
4.
Am J Physiol Endocrinol Metab ; 320(1): E19-E29, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33135461

RESUMO

Estetrol (E4), a natural estrogen synthesized by the human fetal liver, is currently evaluated in phase III clinical studies as a new menopause hormone therapy. Indeed, E4 significantly improves vasomotor and genito-urinary menopausal symptoms and prevents bone demineralization. Compared with other estrogens, E4 was found to have limited effects on coagulation factors in the liver of women allowing to expect less thrombotic events. To fully delineate its clinical potential, the aim of this study was to assess the effect of E4 on metabolic disorders. Here, we studied the pathophysiological consequences of a Western diet (42% kcal fat, 0.2% cholesterol) in ovariectomized female mice under chronic E4 treatment. We showed that E4 reduces body weight gain and improves glucose tolerance in both C57Bl/6 and LDLR-/- mice. To evaluate the role of hepatic estrogen receptor (ER) α in the preventive effect of E4 against obesity and associated disorders such as atherosclerosis and steatosis, mice harboring a hepatocyte-specific ERα deletion (LERKO) were crossed with LDLR-/- mice. Our results demonstrated that, whereas liver ERα is dispensable for the E4 beneficial actions on obesity and atheroma, it is necessary to prevent steatosis in mice. Overall, these findings suggest that E4 could prevent metabolic, hepatic, and vascular disorders occurring at menopause, extending the potential medical interest of this natural estrogen as a new hormonal treatment.NEW & NOTEWORTHY Estetrol prevents obesity, steatosis, and atherosclerosis in mice fed a Western diet. Hepatic ERα is necessary for the prevention of steatosis, but not of obesity and atherosclerosis.


Assuntos
Dieta Ocidental/efeitos adversos , Estetrol/uso terapêutico , Receptor alfa de Estrogênio/genética , Fígado/metabolismo , Obesidade/prevenção & controle , Placa Aterosclerótica/prevenção & controle , Tecido Adiposo/patologia , Animais , Estetrol/administração & dosagem , Feminino , Teste de Tolerância a Glucose , Hepatócitos/metabolismo , Lipídeos/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/patologia , Ovariectomia , Placa Aterosclerótica/patologia , Receptores de LDL/genética
5.
Arterioscler Thromb Vasc Biol ; 40(9): 2143-2158, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640903

RESUMO

OBJECTIVE: ERα (estrogen receptor alpha) exerts nuclear genomic actions and also rapid membrane-initiated steroid signaling. The mutation of the cysteine 451 into alanine in vivo has recently revealed the key role of this ERα palmitoylation site on some vasculoprotective actions of 17ß-estradiol (E2) and fertility. Here, we studied the in vivo role of the arginine 260 of ERα which has also been described to be involved in its E2-induced rapid signaling with PI-3K (phosphoinositide 3-kinase) as well as G protein in cultured cell lines. Approach and Results: We generated a mouse model harboring a point mutation of the murine counterpart of this arginine into alanine (R264A-ERα). In contrast to the C451A-ERα, the R264A-ERα females are fertile with standard hormonal serum levels and normal control of hypothalamus-pituitary ovarian axis. Although R264A-ERα protein abundance was normal, the well-described membrane ERα-dependent actions of estradiol, such as the rapid dilation of mesenteric arteries and the acceleration of endothelial repair of carotid, were abrogated in R264A-ERα mice. In striking contrast, E2-regulated gene expression was highly preserved in the uterus and the aorta, revealing intact nuclear/genomic actions in response to E2. Consistently, 2 recognized nuclear ERα-dependent actions of E2, namely atheroma prevention and flow-mediated arterial remodeling were totally preserved. CONCLUSIONS: These data underline the exquisite role of arginine 264 of ERα for endothelial membrane-initiated steroid signaling effects of E2 but not for nuclear/genomic actions. This provides the first model of fertile mouse with no overt endocrine abnormalities with specific loss-of-function of rapid ERα signaling in vascular functions.


Assuntos
Lesões das Artérias Carótidas/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Terapia de Reposição de Estrogênios , Estrogênios/farmacologia , Fertilidade/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , Mutação Puntual , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Endotélio Vascular/lesões , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Ativação Enzimática , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Ciclo Estral/efeitos dos fármacos , Feminino , Masculino , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/metabolismo , Ovariectomia , Reepitelização/efeitos dos fármacos , Transdução de Sinais , Fatores de Tempo , Útero/efeitos dos fármacos , Útero/metabolismo , Remodelação Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
6.
Int J Mol Sci ; 21(9)2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32375307

RESUMO

The lower incidence of cardiovascular diseases in pre-menopausal women compared to men is well-known documented. This protection has been largely attributed to the protective effect of estrogens, which exert many beneficial effects against arterial diseases, including vasodilatation, acceleration of healing in response to arterial injury, arterial collateral growth and atheroprotection. More recently, with the visualization of the lymphatic vessels, the impact of estrogens on lymphedema and lymphatic diseases started to be elucidated. These estrogenic effects are mediated not only by the classic nuclear/genomic actions via the specific estrogen receptor (ER) α and ß, but also by rapid extra-nuclear membrane-initiated steroid signaling (MISS). The ERs are expressed by endothelial, lymphatic and smooth muscle cells in the different vessels. In this review, we will summarize the complex vascular effects of estrogens and selective estrogen receptor modulators (SERMs) that have been described using different transgenic mouse models with selective loss of ERα function and numerous animal models of vascular and lymphatic diseases.


Assuntos
Artérias/metabolismo , Vasos Linfáticos/metabolismo , Receptores de Estrogênio/metabolismo , Doenças Vasculares/etiologia , Doenças Vasculares/metabolismo , Animais , Artérias/patologia , Biomarcadores , Suscetibilidade a Doenças , Endotélio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Humanos , Vasos Linfáticos/patologia , Fatores Sexuais , Doenças Vasculares/patologia
7.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316608

RESUMO

Endometriosis is a frequent and chronic inflammatory disease with impacts on reproduction, health and quality of life. This disorder is highly estrogen-dependent and the purpose of hormonal treatments is to decrease the endogenous ovarian production of estrogens. High estrogen production is a consistently observed endocrine feature of endometriosis. mRNA and protein levels of estrogen receptors (ER) are different between a normal healthy endometrium and ectopic/eutopic endometrial lesions: endometriotic stromal cells express extraordinarily higher ERß and significantly lower ERα levels compared with endometrial stromal cells. Aberrant epigenetic regulation such as DNA methylation in endometriotic cells is associated with the pathogenesis and development of endometriosis. Although there is a large body of data regarding ERs in endometriosis, our understanding of the roles of ERα and ERß in the pathogenesis of endometriosis remains incomplete. The goal of this review is to provide an overview of the links between endometriosis, ERs and the recent advances of treatment strategies based on ERs modulation. We will also attempt to summarize the current understanding of the molecular and cellular mechanisms of action of ERs and how this could pave the way to new therapeutic strategies.


Assuntos
Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Receptores de Estrogênio/metabolismo , Metilação de DNA , Endométrio/citologia , Endométrio/metabolismo , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Humanos , Receptores de Estrogênio/genética , Células Estromais/metabolismo
8.
Am J Pathol ; 187(11): 2499-2507, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28827141

RESUMO

The genitourinary syndrome of menopause has a negative impact on quality of life of postmenopausal women. The treatment of vulvovaginal atrophy includes administration of estrogens. However, oral estrogen treatment is controversial because of its potential risks on venous thrombosis and breast cancer. Estetrol (E4) is a natural estrogen synthesized exclusively during pregnancy by the human fetal liver and initially considered as a weak estrogen. However, E4 was recently evaluated in phase 1 to 2 clinical studies and found to act as an oral contraceptive in combination with a progestin, without increasing the level of coagulation factors. We recently showed that E4 stimulates uterine epithelial proliferation through nuclear estrogen receptor (ER) α, but failed to elicit endothelial responses. Herein, we first evaluated the morphological and functional impacts of E4 on the vagina of ovariectomized mice, and we determined the molecular mechanism mediating these effects. Vaginal epithelial proliferation and lubrication after stimulation were found to increase after E4 chronic treatment. Using a combination of pharmacological and genetic approaches, we demonstrated that these E4 effects on the vagina are mediated by nuclear ERα activation. Altogether, we demonstrate that the selective activation of nuclear ERα is both necessary and sufficient to elicit functional and structural effects on the vagina, and therefore E4 appears promising as a therapeutic option to improve vulvovaginal atrophy.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Menopausa/efeitos dos fármacos , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Vagina/efeitos dos fármacos , Animais , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/efeitos dos fármacos , Estrogênios/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Qualidade de Vida
9.
Am J Pathol ; 187(6): 1273-1287, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28502695

RESUMO

Estrogen receptor α (ERα) regulates gene transcription through two activation functions (ERα-AF1 and ERα-AF2). We recently found that the protection conferred by 17ß-estradiol against obesity and insulin resistance requires ERα-AF2 but not ERα-AF1. However, the interplay between the two ERα-AFs is poorly understood in vivo and the metabolic influence of a specific ERα-AF1 action remains to be explored. To this end, wild-type, ERα-deficient, or ERα-AF1-deficient ovariectomized female mice were fed a high-fat diet and concomitantly administered with vehicle or tamoxifen, a selective ER modulator that acts as a ERα-AF1 agonist/ERα-AF2 antagonist. In ovariectomized wild-type mice, tamoxifen significantly reduced food intake and totally prevented adiposity, insulin resistance, and steatosis. These effects were abolished in ERα-deficient and ERα-AF1-deficient mice, revealing the specific role of ERα-AF1 activation. Finally, hepatic gene expression changes elicited by tamoxifen in wild-type mice were abrogated in ERα-AF1-deficient mice. The combination of pharmacologic and transgenic approaches thus indicates that selective ERα-AF1 activation by tamoxifen is sufficient to elicit metabolic protection, contrasting with the specific requirement of ERα-AF2 in the metabolic actions of 17ß-estradiol. This redundancy in the ability of the two ERα-AFs to separately mediate metabolic prevention strikingly contrasts with the contribution of both ERα-AFs in breast cancer proliferation, shedding new light on the therapeutic potential of selective ER modulation.


Assuntos
Receptor alfa de Estrogênio/fisiologia , Fígado Gorduroso/prevenção & controle , Resistência à Insulina/fisiologia , Obesidade/prevenção & controle , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Animais , Dieta Hiperlipídica , Avaliação Pré-Clínica de Medicamentos/métodos , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/deficiência , Receptor alfa de Estrogênio/genética , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Ovariectomia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Aumento de Peso/efeitos dos fármacos
10.
Circ Res ; 117(9): 770-8, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26316608

RESUMO

RATIONALE: 17ß-Estradiol (E2) exerts numerous beneficial effects in vascular disease. It regulates gene transcription through nuclear estrogen receptor α (ERα) via 2 activation functions, AF1 and AF2, and can also activate membrane ERα. The role of E2 on the endothelium relies on membrane ERα activation, but the molecular mechanisms of its action on vascular smooth muscle cells (VSMCs) are not fully understood. OBJECTIVE: The aim of this study was to determine which cellular target and which ERα subfunction are involved in the preventive action of E2 on neointimal hyperplasia. METHODS AND RESULTS: To trigger neointimal hyperplasia of VSMC, we used a mouse model of femoral arterial injury. Cre-Lox models were used to distinguish between the endothelial- and the VSMC-specific actions of E2. The molecular mechanisms underlying the role of E2 were further characterized using both selective ERα agonists and transgenic mice in which the ERαAF1 function had been specifically invalidated. We found that (1) the selective inactivation of ERα in VSMC abrogates the neointimal hyperplasia protection induced by E2, whereas inactivation of endothelial and hematopoietic ERα has no effect; (2) the selective activation of membrane ERα does not prevent neointimal hyperplasia; and (3) ERαAF1 is necessary and sufficient to inhibit postinjury VSMC proliferation. CONCLUSIONS: Altogether, ERαAF1-mediated nuclear action is both necessary and sufficient to inhibit postinjury arterial VSMC proliferation, whereas membrane ERα largely regulates the endothelial functions of E2. This highlights the exquisite cell/tissue-specific actions of the ERα subfunctions and helps to delineate the spectrum of action of selective ER modulators.


Assuntos
Artérias/metabolismo , Receptor alfa de Estrogênio/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Actinas/metabolismo , Animais , Artérias/efeitos dos fármacos , Artérias/patologia , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Estrogênios/farmacologia , Artéria Femoral/efeitos dos fármacos , Artéria Femoral/lesões , Artéria Femoral/metabolismo , Hiperplasia , Imuno-Histoquímica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Neointima/genética , Ovariectomia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Túnica Íntima/efeitos dos fármacos , Túnica Íntima/metabolismo
11.
Adv Exp Med Biol ; 1043: 401-426, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29224105

RESUMO

Estrogen receptor alpha (ERα) has been demonstrated to play a key role in reproduction but also to exert numerous functions in nonreproductive tissues. Accordingly, ERα is now recognized as a key regulator of energy homeostasis and glucose metabolism and mediates the protective effects of estrogens against obesity and type 2 diabetes. This chapter attempts to summarize our current understanding of the mechanisms of ERα activation and their involvement in the modulation of energy balance and glucose metabolism. We first focus on the experimental studies that constitute the basis of the understanding of ERα as a nuclear receptor and more specifically on the key roles played by its two activation functions (AFs). We depict the consequences of the selective inactivation of these AFs in mouse models, which further underline the prominent role of nuclear ERα in the prevention of obesity and diabetes, as on the reproductive tract and the vascular system. Besides these nuclear actions, a fraction of ERα is associated with the plasma membrane and activates nonnuclear signaling from this site. Such rapid effects, called membrane-initiated steroid signals (MISS), have been characterized in a variety of cell lines and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS as well as the generation of mice expressing an ERα protein impeded for membrane localization has just begun to unravel the physiological role of MISS in vivo and their contribution to ERα-mediated metabolic protection. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators.


Assuntos
Glicemia/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Metabolismo Energético , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Animais , Glicemia/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Diabetes Mellitus/prevenção & controle , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Receptor alfa de Estrogênio/química , Homeostase , Humanos , Obesidade/metabolismo , Obesidade/fisiopatologia , Obesidade/prevenção & controle , Conformação Proteica , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Transdução de Sinais , Relação Estrutura-Atividade
12.
Proc Natl Acad Sci U S A ; 111(2): E283-90, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24371309

RESUMO

Estrogen receptor alpha (ERα) activation functions AF-1 and AF-2 classically mediate gene transcription in response to estradiol (E2). A fraction of ERα is targeted to plasma membrane and elicits membrane-initiated steroid signaling (MISS), but the physiological roles of MISS in vivo are poorly understood. We therefore generated a mouse with a point mutation of the palmitoylation site of ERα (C451A-ERα) to obtain membrane-specific loss of function of ERα. The abrogation of membrane localization of ERα in vivo was confirmed in primary hepatocytes, and it resulted in female infertility with abnormal ovaries lacking corpora lutea and increase in luteinizing hormone levels. In contrast, E2 action in the uterus was preserved in C451A-ERα mice and endometrial epithelial proliferation was similar to wild type. However, E2 vascular actions such as rapid dilatation, acceleration of endothelial repair, and endothelial NO synthase phosphorylation were abrogated in C451A-ERα mice. A complementary mutant mouse lacking the transactivation function AF-2 of ERα (ERα-AF2(0)) provided selective loss of function of nuclear ERα actions. In ERα-AF2(0), the acceleration of endothelial repair in response to estrogen-dendrimer conjugate, which is a membrane-selective ER ligand, was unaltered, demonstrating integrity of MISS actions. In genome-wide analysis of uterine gene expression, the vast majority of E2-dependent gene regulation was abrogated in ERα-AF2(0), whereas in C451A-ERα it was nearly fully preserved, indicating that membrane-to-nuclear receptor cross-talk in vivo is modest in the uterus. Thus, this work genetically segregated membrane versus nuclear actions of a steroid hormone receptor and demonstrated their in vivo tissue-specific roles.


Assuntos
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Receptor alfa de Estrogênio/genética , Ovário/fisiologia , Útero/metabolismo , Análise de Variância , Animais , Western Blotting , Movimento Celular , Biologia Computacional , Células Endoteliais , Receptor alfa de Estrogênio/metabolismo , Feminino , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Lipoilação/genética , Camundongos , Camundongos Transgênicos , Análise em Microsséries , Ovário/metabolismo , Mutação Puntual/genética , Receptor Cross-Talk/fisiologia
13.
Breast Cancer Res ; 18(1): 123, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27927249

RESUMO

BACKGROUND: To date, all studies conducted on breast cancer diagnosis have focused on the expression of the full-length 66-kDa estrogen receptor alpha (ERα66). However, much less attention has been paid to a shorter 46-kDa isoform (ERα46), devoid of the N-terminal region containing the transactivation function AF-1. Here, we investigated the expression levels of ERα46 in breast tumors in relation to tumor grade and size, and examined the mechanism of its generation and its specificities of coregulatory binding and its functional activities. METHODS: Using approaches combining immunohistochemistry, Western blotting, and proteomics, antibodies allowing ERα46 detection were identified and the expression levels of ERα46 were quantified in 116 ERα-positive human breast tumors. ERα46 expression upon cellular stress was studied, and coregulator bindings, transcriptional, and proliferative response were determined to both ERα isoforms. RESULTS: ERα46 was expressed in over 70% of breast tumors at variable levels which sometimes were more abundant than ERα66, especially in differentiated, lower-grade, and smaller-sized tumors. We also found that ERα46 can be generated via internal ribosome entry site-mediated translation in the context of endoplasmic reticulum stress. The binding affinities of both unliganded and fully-activated receptors towards co-regulator peptides revealed that the respective potencies of ERα46 and ERα66 differ significantly, contributing to the differential transcriptional activity of target genes to 17ß estradiol (E2). Finally, increasing amounts of ERα46 decrease the proliferation rate of MCF7 tumor cells in response to E2. CONCLUSIONS: We found that, besides the full-length ERα66, the overlooked ERα46 isoform is also expressed in a majority of breast tumors. This finding highlights the importance of the choice of antibodies used for the diagnosis of breast cancer, which are able or not to detect the ERα46 isoform. In addition, since the function of both ERα isoforms differs, this work underlines the need to develop new technologies in order to discriminate ERα66 and ERα46 expression in breast cancer diagnosis which could have potential clinical relevance.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica , Processamento Alternativo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Análise por Conglomerados , Estresse do Retículo Endoplasmático , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Ligação Proteica , Biossíntese de Proteínas , Isoformas de Proteínas , Proteoma , Proteômica/métodos , Estudos Retrospectivos
14.
Am J Pathol ; 183(1): 304-12, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23669343

RESUMO

Based on both experimental and clinical data, tamoxifen has been proposed to have cardiovascular benefits, although the mechanism(s) contributing to that protective effect are still poorly understood. In vitro experiments demonstrated that tamoxifen elicits its transcriptional effect through estrogen receptor (ER) α, but other targets can participate in its actions. However, although tamoxifen selectively activates the activating function (AF)-1 of ERα, we recently showed that this ERα subfunction is dispensable for the atheroprotective action of 17ß-estradiol (E2), the main ligand of ERs. The goal of the present work is to determine to which extent ERα and its AF-1 mediate the vasculoprotective action of tamoxifen. Our data confirm that tamoxifen exerts an atheroprotective action on low density lipoprotein receptor (LDL-r(-/-)) female mice, but, in contrast to E2, it fails to accelerate reendothelialization after carotid electric injury. Tamoxifen and E2 elicit differences in gene expression profiles in the mouse aorta. Finally, the atheroprotective action of tamoxifen is abrogated in ERα(-/-)LDL-r(-/-) mice and in LDL-r(-/-) mice selectively deficient in ERαAF-1 (ERαAF-1(0/0)LDL-r(-/-)). Our results demonstrate, for the first time to our knowledge, that tamoxifen mediates its actions in vivo through the selective activation of ERαAF-1, which is sufficient to prevent atheroma, but not to accelerate endothelial healing.


Assuntos
Aorta/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Placa Aterosclerótica/prevenção & controle , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia , Animais , Biomarcadores/metabolismo , Artérias Carótidas/efeitos dos fármacos , Lesões das Artérias Carótidas , Endotélio Vascular/lesões , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/metabolismo , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Tamoxifeno/uso terapêutico
15.
Proc Natl Acad Sci U S A ; 108(32): 13311-6, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21788522

RESUMO

17ß-Estradiol (E2) regulates estrogen receptor-α (ERα) target gene transcription through the two independent activation functions (AFs), AF1 and AF2, located in the N-terminal and ligand binding domain of ERα, respectively. We previously reported that ERα is required for the E2 atheroprotective action as well as for its accelerative action on endothelial healing, but its AF1 function is dispensable. Here, we investigated the role of ERαAF2 in these two major beneficial actions of E2 by electively targeting ERαAF2 (named ERαAF2(0)). Our results prove four points. (i) Compared with WT ERα, the ability of ERαAF2(0) to stimulate the C3 complement or the estrogen response element-thymidine kinase promoter in two cell lines was dramatically decreased, confirming the importance of AF2 in the E2-induced transcriptional activity of ERα. (ii) The uterotrophic action of E2 was totally absent in ERαAF2(0) mice, showing the crucial role of ERαAF2 in E2-induced uterus hyperplasia. (iii) ERαAF2 was dispensable for the accelerative action of E2 on endothelial healing, underlining the functionality of ERαAF2(0) in vivo. (iv) Finally, the atheroprotective effect of E2 was abrogated in ERαAF2(0) LDL-r(-/-) mice. Thus, whereas ERαAF1 and ERαAF2 are both required for the uterotrophic action of E2, we show that only ERαAF2 is necessary for its atheroprotective effect.


Assuntos
Aterosclerose/prevenção & controle , Endotélio Vascular/patologia , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Substâncias Protetoras/farmacologia , Ativação Transcricional/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Aterosclerose/patologia , Peso Corporal/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Células Hep G2 , Humanos , Camundongos , Camundongos Knockout , Tamanho do Órgão/efeitos dos fármacos , Reprodutibilidade dos Testes , Útero/efeitos dos fármacos , Útero/metabolismo , Útero/patologia
16.
Theranostics ; 14(1): 249-264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164151

RESUMO

Rationale: 17ß-estradiol (E2) can directly promote the growth of ERα-negative cancer cells through activation of endothelial ERα in the tumor microenvironment, thereby increasing a normalized tumor angiogenesis. ERα acts as a transcription factor through its nuclear transcriptional AF-1 and AF-2 transactivation functions, but membrane ERα plays also an important role in endothelium. The present study aims to decipher the respective roles of these two pathways in ERα-negative tumor growth. Moreover, we delineate the actions of tamoxifen, a Selective Estrogen Receptor Modulator (SERM) in ERα-negative tumors growth and angiogenesis, since we recently demonstrated that tamoxifen impacts vasculature functions through complex modulation of ERα activity. Methods: ERα-negative B16K1 cancer cells were grafted into immunocompetent mice mutated for ERα-subfunctions and tumor growths were analyzed in these different models in response to E2 and/or tamoxifen treatment. Furthermore, RNA sequencings were analyzed in endothelial cells in response to these different treatments and validated by RT-qPCR and western blot. Results: We demonstrate that both nuclear and membrane ERα actions are required for the pro-tumoral effects of E2, while tamoxifen totally abrogates the E2-induced in vivo tumor growth, through inhibition of angiogenesis but promotion of vessel normalization. RNA sequencing indicates that tamoxifen inhibits the E2-induced genes, but also initiates a specific transcriptional program that especially regulates angiogenic genes and differentially regulates glycolysis, oxidative phosphorylation and inflammatory responses in endothelial cells. Conclusion: These findings provide evidence that tamoxifen specifically inhibits angiogenesis through a reprogramming of endothelial gene expression via regulation of some transcription factors, that could open new promising strategies to manage cancer therapies affecting the tumor microenvironment of ERα-negative tumors.


Assuntos
Neoplasias , Tamoxifeno , Camundongos , Animais , Tamoxifeno/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Células Endoteliais/metabolismo , Angiogênese , Expressão Gênica , Endotélio/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/genética
17.
Biochem Pharmacol ; 214: 115677, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37419371

RESUMO

Breast cancer is the most common cancer in women. Over the past few decades, advances in cancer detection and treatment have significantly improved survival rate of breast cancer patients. However, due to the cardiovascular toxicity of cancer treatments (chemotherapy, anti-HER2 antibodies and radiotherapy), cardiovascular diseases (CVD) have become an increasingly important cause of long-term morbidity and mortality in breast cancer survivors. Endocrine therapies are prescribed to reduce the risk of recurrence and specific death in estrogen receptor-positive (ER +) early breast cancer patients, but their impact on CVD is a matter of debate. Whereas aromatase inhibitors and luteinizing hormone-releasing hormone (LHRH) analogs inhibit estrogen synthesis, tamoxifen acts as a selective estrogen receptor modulator (SERM), opposing estrogen action in the breast but mimicking their actions in other tissues, including arteries. This review aims to summarize the main clinical and experimental studies reporting the effects of tamoxifen on CVD. In addition, we will discuss how recent findings on the mechanisms of action of these therapies may contribute to a better understanding and anticipation of CVD risk in breast cancer patients.


Assuntos
Neoplasias da Mama , Doenças Cardiovasculares , Feminino , Humanos , Tamoxifeno/efeitos adversos , Antineoplásicos Hormonais/efeitos adversos , Quimioterapia Adjuvante , Estrogênios , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/tratamento farmacológico , Artérias , Moduladores Seletivos de Receptor Estrogênico/efeitos adversos
18.
Front Endocrinol (Lausanne) ; 14: 1215947, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529599

RESUMO

Background: Estrogen Receptor α (ERα) is a significant modulator of energy balance and lipid/glucose metabolisms. Beyond the classical nuclear actions of the receptor, rapid activation of intracellular signaling pathways is mediated by a sub-fraction of ERα localized to the plasma membrane, known as Membrane Initiated Steroid Signaling (MISS). However, whether membrane ERα is involved in the protective metabolic actions of endogenous estrogens in conditions of nutritional challenge, and thus contributes to sex differences in the susceptibility to metabolic diseases, remains to be clarified. Methods: Male and female C451A-ERα mice, harboring a point mutation which results in the abolition of membrane localization and MISS-related effects of the receptor, and their wild-type littermates (WT-ERα) were maintained on a normal chow diet (NCD) or fed a high-fat diet (HFD). Body weight gain, body composition and glucose tolerance were monitored. Insulin sensitivity and energy balance regulation were further investigated in HFD-fed female mice. Results: C451A-ERα genotype had no influence on body weight gain, adipose tissue accumulation and glucose tolerance in NCD-fed mice of both sexes followed up to 7 months of age, nor male mice fed a HFD for 12 weeks. In contrast, compared to WT-ERα littermates, HFD-fed C451A-ERα female mice exhibited: 1) accelerated fat mass accumulation, liver steatosis and impaired glucose tolerance; 2) whole-body insulin resistance, assessed by hyperinsulinemic-euglycemic clamps, and altered insulin-induced signaling in skeletal muscle and liver; 3) significant decrease in energy expenditure associated with histological and functional abnormalities of brown adipose tissue and a defect in thermogenesis regulation in response to cold exposure. Conclusion: Besides the well-characterized role of ERα nuclear actions, membrane-initiated ERα extra-nuclear signaling contributes to female, but not to male, protection against HFD-induced obesity and associated metabolic disorders in mouse.


Assuntos
Resistência à Insulina , Doenças não Transmissíveis , Feminino , Masculino , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Receptor alfa de Estrogênio/metabolismo , Receptores de Estrogênio , Resistência à Insulina/fisiologia , Obesidade/genética , Obesidade/metabolismo , Insulina/metabolismo , Aumento de Peso , Glucose/metabolismo , Tecido Adiposo Marrom/metabolismo
19.
JCI Insight ; 8(5)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36729672

RESUMO

The main estrogen, 17ß-estradiol (E2), exerts several beneficial vascular actions through estrogen receptor α (ERα) in endothelial cells. However, the impact of other natural estrogens such as estriol (E3) and estetrol (E4) on arteries remains poorly described. In the present study, we report the effects of E3 and E4 on endothelial healing after carotid artery injuries in vivo. After endovascular injury, which preserves smooth muscle cells (SMCs), E2, E3, and E4 equally stimulated reendothelialization. By contrast, only E2 and E3 accelerated endothelial healing after perivascular injury that destroys both endothelial cells and SMCs, suggesting an important role of this latter cell type in E4's action, which was confirmed using Cre/lox mice inactivating ERα in SMCs. In addition, E4 mediated its effects independently of ERα membrane-initiated signaling, in contrast with E2. Consistently, RNA sequencing analysis revealed that transcriptomic and cellular signatures in response to E4 profoundly differed from those of E2. Thus, whereas acceleration of endothelial healing by estrogens had been viewed as entirely dependent on endothelial ERα, these results highlight the very specific pharmacological profile of the natural estrogen E4, revealing the importance of dialogue between SMCs and endothelial cells in its arterial protection.


Assuntos
Células Endoteliais , Estrogênios , Animais , Camundongos , Estrogênios/farmacologia , Receptor alfa de Estrogênio/genética , Estradiol/farmacologia , Artérias
20.
Proc Natl Acad Sci U S A ; 106(6): 2053-8, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19188600

RESUMO

Full-length 66-kDa estrogen receptor alpha (ERalpha) stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal domain and AF-2 in the ligand binding domain. Another physiologically expressed 46-kDa ERalpha isoform lacks the N-terminal A/B domains and is consequently devoid of AF-1. Previous studies in cultured endothelial cells showed that the N-terminal A/B domain might not be required for estradiol (E2)-elicited NO production. To evaluate the involvement of ERalpha AF-1 in the vasculoprotective actions of E2, we generated a targeted deletion of the ERalpha A/B domain in the mouse. In these ERalphaAF-1(0) mice, both basal endothelial NO production and reendothelialization process were increased by E2 administration to a similar extent than in control mice. Furthermore, exogenous E2 similarly decreased fatty streak deposits at the aortic root from both ovariectomized 18-week-old ERalphaAF-1(+/+) LDLr(-/-) (low-density lipoprotein receptor) and ERalphaAF-1(0) LDLr (-/-) mice fed with a hypercholesterolemic diet. In addition, quantification of lesion size on en face preparations of the aortic tree of 8-month-old ovariectomized or intact female mice revealed that ERalpha AF-1 is dispensable for the atheroprotective action of endogenous estrogens. We conclude that ERalpha AF-1 is not required for three major vasculoprotective actions of E2, whereas it is necessary for the effects of E2 on its reproductive targets. Thus, selective ER modulators stimulating ERalpha with minimal activation of ERalpha AF-1 could retain beneficial vascular actions, while minimizing the sexual effects.


Assuntos
Estradiol/farmacologia , Receptor alfa de Estrogênio/fisiologia , Animais , Aterosclerose/etiologia , Células Endoteliais/metabolismo , Receptor alfa de Estrogênio/química , Feminino , Camundongos , Camundongos Knockout , Óxido Nítrico/biossíntese , Ovariectomia , Substâncias Protetoras , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA