Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Anat ; 244(4): 639-653, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38030148

RESUMO

The suprapatellar fat pad is an adipose tissue located in the anterior knee whose role in osteoarthritis is still debated. Considering that anatomy drives function, the aim of this histotopographic study was to investigate the specific morphological features of the suprapatellar fat pad versus the infrapatellar fat pad in the absence of osteoarthritis, for a broad comparative analysis. Suprapatellar fat pad and infrapatellar fat pad tissue samples (n = 10/group) underwent microscopical/immunohistochemical staining and transmission electron microscopy analysis; thus, tissue-specific characteristics (i.e., vessels and nerve endings presence, lobuli, adipocytes features, septa), including extracellular matrix proteins prevalence (collagens, elastic fibers), were focused. Multiphoton microscopy was also adopted to evaluate collagen fiber orientation within the samples by Fast Fourier Transform (coherency calculation). The absence of inflammation was confirmed, and comparable counted vessels and nerve endings were shown. Like the infrapatellar fat pad, the suprapatellar fat pad appeared as a white adipose tissue with lobuli and septa of comparable diameter and thickness, respectively. Tissue main characteristics were also proved by both semithin sections and transmission electron microscopy analysis. The suprapatellar fat pad adipocytes were roundish and with a smaller area, perimeter, and major axis than that of the infrapatellar fat pad. The collagen fibers surrounding them showed no significant difference in collagen type I and significantly higher values for collagen type III in the infrapatellar fat pad group. Regarding the septa, elastic fiber content was statistically comparable between the two groups, even though more represented by the suprapatellar fat pad. Total collagen was significantly higher in the infrapatellar fat pad and comparing collagen type I and type III they were similarly represented in the whole cohort despite collagen type I appearing to be higher in the infrapatellar fat pad than in the suprapatellar fat pad and vice versa for collagen type III. Second harmonic generation microscopy confirmed through coherency calculation an anisotropic distribution of septa collagen fibers. From a mechanical point of view, the different morphological characteristics determined a major stiffness for the infrapatellar fat pad with respect to the suprapatellar fat pad. This study provides, for the first time, a topographic description of the suprapatellar fat pad compared to the infrapatellar fat pad; differences between the two groups may be attributed to a different anatomical location within the knee; the results gathered here may be useful for a more complete interpretation of osteoarthritis disease, involving not only cartilage but the whole joint.


Assuntos
Colágeno Tipo I , Osteoartrite , Humanos , Colágeno Tipo III , Tecido Adiposo/anatomia & histologia , Articulação do Joelho/anatomia & histologia
2.
BMC Vet Res ; 20(1): 153, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659026

RESUMO

BACKGROUND: Melting corneal ulcers are a serious condition that affects a great number of animals and people around the world and it is characterised by a progressive weakening of the tissue leading to possible severe ophthalmic complications, such as visual impairment or blindness. This disease is routinely treated with medical therapy and keratoplasty, and recently also with alternative regenerative therapies, such as cross-linking, amniotic membrane transplant, and laser. Plasma medicine is another recent example of regenerative treatment that showed promising results in reducing the microbial load of corneal tissue together with maintaining its cellular vitality. Since the effect of helium plasma application on corneal mechanical viscoelasticity has not yet been investigated, the aim of this study is first to evaluate it on ex vivo porcine corneas for different exposition times and then to compare the results with previous data on cross-linking treatment. RESULTS: 94 ex vivo porcine corneas divided into 16 populations (healthy or injured, fresh or cultured and treated or not with plasma or cross-linking) were analysed. For each population, a biomechanical analysis was performed by uniaxial stress-relaxation tests, and a statistical analysis was carried out considering the characteristic mechanical parameters. In terms of equilibrium normalised stress, no statistically significant difference resulted when the healthy corneas were compared with lesioned plasma-treated ones, independently of treatment time, contrary to what was obtained about the cross-linking treated corneas which exhibited more intense relaxation phenomena. CONCLUSIONS: In this study, the influence of the Helium plasma treatment was observed on the viscoelasticity of porcine corneas ex vivo, by restoring in lesioned tissue a degree of relaxation similar to the one of the native tissue, even after only 2 min of application. Therefore, the obtained results suggest that plasma treatment is a promising new regenerative ophthalmic therapy for melting corneal ulcers, laying the groundwork for further studies to correlate the mechanical findings with corneal histology and ultrastructural anatomy after plasma treatment.


Assuntos
Córnea , Hélio , Gases em Plasma , Animais , Suínos , Córnea/efeitos dos fármacos , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Fenômenos Biomecânicos , Álcalis , Pressão Atmosférica , Úlcera da Córnea/veterinária , Úlcera da Córnea/terapia
3.
Artif Organs ; 47(4): 617-639, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36374175

RESUMO

Artificial sphincters (ASs) are used to replace the function of the biological sphincters in case of severe urinary and fecal incontinence (UI and FI), and gastroesophageal reflux disease (GERD). The design of ASs is established on different mechanisms, e.g., magnetic forces or hydraulic pressure, with the final goal to achieve a implantable and durable AS. In clinical practice, the implantation of in-commerce AS is considered a reasonable solution, despite the sub-optimal clinical outcomes. The failure of these surgeries is due to the malfunction of the devices (between 46 and 51%) or the side effects on the biological tissues (more than 38%), such as infection and atrophy. Concentrating on this latter characteristic, particular attention has been given to the interaction between the biological tissues and AS, pointing out the closing mechanism around the duct and the effect on the tissues. To analyze this aspect, an overview of existing commercial/ready-on-market ASs for GERD, UI, and FI, together with the clinical outcomes available from the in-commerce AS, is given. Moreover, this invited review discusses ongoing developments and future research pathways for creating novel ASs. The application of engineering principles and design concepts to medicine enhances the quality of healthcare and improves patient outcomes. In this context, computational methods represent an innovative solution in the design of ASs, proving data on the occlusive force and pressure necessary to guarantee occlusion and avoid tissue damage, considering the coupling between different device sizes and individual variability.


Assuntos
Incontinência Fecal , Incontinência Urinária , Esfíncter Urinário Artificial , Humanos , Incontinência Fecal/cirurgia , Próteses e Implantes , Incontinência Urinária/cirurgia
4.
BMC Vet Res ; 17(1): 340, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711207

RESUMO

BACKGROUND: Cornea is a composite tissue exhibiting nonlinear and time-dependent mechanical properties. Corneal ulcers are one of the main pathologies that affect this tissue, disrupting its structural integrity and leading to impaired functions. In this study, uniaxial tensile and stress-relaxation tests are developed to evaluate stress-strain and time-dependent mechanical behaviour of porcine corneas. RESULTS: The samples are split in two groups: some corneas are analysed in an unaltered state (healthy samples), while others are injured with alkaline solution to create an experimental ulcer (lesioned samples). Furthermore, within each group, corneas are examined in two conditions: few hours after the enucleation (fresh samples) or after 7 days in a specific culture medium for the tissue (cultured samples). Finally, another condition is added: corneas from all the groups undergo or not a cross-linking treatment. In both stress-strain and stress-relaxation tests, a weakening of the tissue is observed due to the imposed conditions (lesion, culture and treatment), represented by a lower stiffness and increased stress-relaxation. CONCLUSIONS: Alkali-induced corneal stromal melting determines changes in the mechanical response that can be related to a damage at microstructural level. The results of the present study represent the basis for the investigation of traditional and innovative corneal therapies.


Assuntos
Córnea/efeitos dos fármacos , Córnea/fisiologia , Úlcera da Córnea/veterinária , Técnicas de Cultura de Órgãos/veterinária , Doenças dos Suínos/patologia , Animais , Úlcera da Córnea/induzido quimicamente , Úlcera da Córnea/patologia , Suínos , Doenças dos Suínos/induzido quimicamente
5.
Int J Mol Sci ; 21(17)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825633

RESUMO

Osteoarthritis (OA) is one of the most common joint disorders. Evidence suggests that the infrapatellar fat pad (IFP) is directly involved in OA pathology. However, a comparison between OA versus non-OA IFP is still missing. Thus, the aim of this study was to compare IFP molecular, adipocytes and extracellular matrix characteristics of patients affected by OA, and patients undergoing anterior cruciate ligament (ACL) reconstruction. We hypothesized that not only inflammation but also changes in adipocytes and extracellular matrix (ECM) composition might be involved in OA pathogenesis. Fifty-three patients were enrolled. IFP biopsies were obtained, evaluating: (a) lymphocytic infiltration and vascularization; (b) adipocytes area and number; (c) adipo-cytokines and extracellular matrix gene expression levels; (d) IL-6 and VEGF protein production; (e) collagen fibers distribution. OA IFP was more inflamed and vascularized compared to ACL IFP. OA IFP adipocytes were larger and numerically lower (1.3-fold) than ACL IFP adipocytes. An increase of gene expression of typical white adipose tissue genes was observed in OA compared to ACL IFP. Collagen-types distribution was different in the OA IFP group compared to controls, possibly explaining the change of the biomechanical characteristics found in OA IFP. Statistical linear models revealed that the adipocyte area correlated with BMI in the OA group. In conclusion, inflammation and fibrotic changes of OA IFP could represent novel therapeutic targets to counteract OA.


Assuntos
Tecido Adiposo/fisiologia , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Proteínas/genética , Proteínas/metabolismo , Adipócitos/patologia , Adipócitos/fisiologia , Tecido Adiposo/patologia , Adulto , Idoso , Lesões do Ligamento Cruzado Anterior/patologia , Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior , Artroplastia do Joelho , Índice de Massa Corporal , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/cirurgia , Patela
6.
J Anat ; 235(1): 80-87, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30945285

RESUMO

The infrapatellar fat pad (IFP) is an intracapsular but extrasynovial structure, located between the patellar tendon, the femoral condyles and the tibial plateau. It consists of white adipose tissue, organised in lobules defined by thin connective septa. The aim of this study is the morphometric and ultrasonographic analysis of IFP in subjects without knee pathology during flexion-extension movements. The morphometric study was conducted on 20 cadavers (15M, 5F, mean age 80.2 years). Ultrasound was performed on 24 volunteers with no history of knee diseases (5M, 19F, mean age: 45 years). The characteristics of the adipose lobules near the patellar tendon and in the deep portion of the IFP were evaluated. Numerical models were provided, according to the size of the lobules. At histological examination, the adipose lobules located near the patellar tendon were larger (mean area 12.2 mm2  ± 5.3) than those at a deeper level (mean area 1.34 mm2  ± 0.7, P < 0.001) and the thickness of the septa of the deepest adipose lobules (mean value 0.35 mm ± 0.32) was greater than that of the superficial one (mean value 0.29 mm ± 0.25, P < 0.001). At ultrasound, the IFP was seen to be composed of very large lobules in the superficial part (mean area 0.29 cm2  ± 0.17 in extension), with a significant reduction in flexion (mean area 0.12 cm2  ± 0.07, P < 0.01). The deep lobules were smaller (mean area 0.11 cm2  ± 0.08 in extension) and did not change their values (mean area 0.19 cm2  ± 0.52 in flexion, P > 0.05). In the sagittal plane, the reduction of thickness of the superficial layer (with large adipose lobules) during flexion was 20.6%, whereas that of the deep layer (with small adipose lobules) was 1.3%. Numerical simulation of vertical loads, corresponding to flexion of the knee, showed that stress mainly developed within the interlobular septa and opposed bulging of the lobules. The characteristics of the lobular arrangement of the IFP (large lobules with superficial septa in the superficial part and small lobules with thick septa in the deep one), significant changes in the areas and perimeters of the superficial lobules, and the reduced thickness of the superficial layer during flexion all indicate the dynamic role played by the IFP in knee kinematics.


Assuntos
Tecido Adiposo/anatomia & histologia , Articulação do Joelho , Patela/anatomia & histologia , Amplitude de Movimento Articular/fisiologia , Tecido Adiposo/diagnóstico por imagem , Adiposidade/fisiologia , Idoso de 80 Anos ou mais , Feminino , Humanos , Articulação do Joelho/anatomia & histologia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/fisiologia , Masculino , Pessoa de Meia-Idade , Patela/diagnóstico por imagem , Ultrassonografia
7.
Artif Organs ; 43(9): 888-896, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30868625

RESUMO

Male urinary incontinence is highly prevalent, leading to a miserable quality of life. The artificial urinary sphincter (AUS) is the device that closely simulates the function of the biological urinary sphincter. The precise evaluation of occlusion mechanisms and of interaction phenomena occurring between AUS cuff and urethral duct is fundamental for more reliable design. The action induced in the interaction with urethral duct under a specific pressure depends on its constitutive material and structural characteristics. The methods of experimental and computational bioengineering are exploited to investigate mechanical functionality of the coupled system, as AUS and urethral duct. Experimental tests are developed to investigate the response when the AUS is inflated around a urethral phantom. Numerical model of the cuff is developed mimicking the experimental tests for the validation. Subsequently, numerical models are exploited to interpret the interaction of the cuff with urethral phantoms considering the influence of urethral size and of tissues mechanical behavior, mimicking healthy and degraded configurations. The investigation provides useful information on the behavior of AUS cuff with urethral duct evaluating the action induced and represents a support for planning an extension of experimental tests on animal and human urethral samples.


Assuntos
Uretra/fisiologia , Esfíncter Urinário Artificial , Bioengenharia , Simulação por Computador , Humanos , Masculino , Modelos Biológicos , Desenho de Prótese , Incontinência Urinária/fisiopatologia , Incontinência Urinária/terapia
8.
Rheumatology (Oxford) ; 56(10): 1784-1793, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957567

RESUMO

Objective: The infrapatellar fat pad (IFP) is considered a local producer of adipocytokines, suggesting a potential role in OA. The objective of this study was to evaluate the histopathological and molecular characteristics of OA IFPs compared with controls. Methods: The histopathological characteristics of IFPs were evaluated in patients undergoing total knee replacements and in control patients (without OA), considering the following parameters: presence of inflammatory cells, vascularization, adipose lobules dimension and thickness of the interlobular septa. Immunohistochemistry was performed to evaluate VEGF, monocyte chemotactic protein 1 (MCP-1) and IL-6 proteins. Quantitative real time PCR was performed to evaluate the expression levels of adipocytokines in the OA IFPs. Results: OA IFPs showed an increase in inflammatory infiltration, vascularization and thickness of the interlobular septa compared with controls. VEGF, MCP-1 and IL-6 proteins were higher in OA IFPs compared with in controls. Inflammatory infiltration, hyperplasia, vascularization and fibrosis were increased in OA IFP synovial membranes compared with in those of controls. VEGF protein levels were associated with an increased number of vessels in the OA IFPs, while MCP-1 and IL-6 protein levels were associated with higher grades of inflammatory infiltration. Leptin levels were positively correlated with adiponectin and MCP-1expression, while adiponectin positively correlated with peroxisome proliferative activated receptor gamma, MCP-1 and IFP vascularity. MCP-1 showed a positive correlation with peroxisome proliferative activated receptor gamma. IFP lobules dimensions were positively correlated with IL-6 expression and negatively with thickness of interlobular septa. VEGF mRNA levels were positively correlated with increased synovial vascularity. Conclusions: OA IFPs and synovial membranes are more inflamed, vascularized and fibrous compared with those of control patients (without OA).


Assuntos
Tecido Adiposo/patologia , Osteoartrite do Joelho/patologia , Patela/patologia , Adipocinas/análise , Adiponectina/análise , Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/metabolismo , Idoso , Idoso de 80 Anos ou mais , Artroplastia do Joelho , Estudos de Casos e Controles , Quimiocina CCL2/análise , Feminino , Humanos , Interleucina-6/análise , Articulação do Joelho/irrigação sanguínea , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/cirurgia , Patela/irrigação sanguínea , Patela/metabolismo , Membrana Sinovial/irrigação sanguínea , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Fator A de Crescimento do Endotélio Vascular/análise
9.
Exp Physiol ; 101(5): 641-56, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26864993

RESUMO

NEW FINDINGS: What is the central question of this study? Prostheses for treatment of urinary incontinence elicit complications associated with an inadequate mechanical action. This investigation aimed to define a procedure addressed to urethral mechanical characterization. Experimental tests are the basis for constitutive formulation, with a view to numerical modelling for investigation of the interaction between the tissues and a prosthesis. What is the main finding and its importance? Horse urethra, selected for its histomorphometric similarity to human urethra, was characterized by integrated histological analysis and mechanical tests on the biological tissue and structure, leading to constitutive formulation. A non-linear, anisotropic and time-dependent response was found, representing a valid basis for development of a numerical model to interpret the functional behaviour of the urethra. Urinary dysfunction can lead to incontinence, with an impact on the quality of life. Severe dysfunction can be overcome surgically by the use of an artificial urinary sphincter. Nonetheless, several complications may result from inappropriate functioning of the prosthesis, in many instances resulting from an unsuitable mechanical action of the device on the urethral tissues. Computational models allow investigation of the mechanical interaction between biological tissues and biomedical devices, representing a potential support for surgical practice and prosthesis design. The development of such computational tools requires experimental data on the mechanics of biological tissues and structures, which are rarely reported in the literature. The aim of this study was to provide a procedure for the mechanical characterization of urethral tissues and structures. The experimental protocol included the morphometric and histological analysis of urethral tissues, the mechanical characterization of the response of tissues to tensile and stress-relaxation tests and evaluation of the behaviour of urethral structures by inflation tests. Results from the preliminary experiments were processed, adopting specific model formulations, and also providing the definition of parameters that characterize the elastic and viscous behaviour of the tissues. Different experimental protocols, leading to a comprehensive set of experimental data, allow for a reciprocal assessment of reliability of the investigation approach.


Assuntos
Fenômenos Biomecânicos/fisiologia , Uretra/anatomia & histologia , Uretra/fisiologia , Animais , Simulação por Computador , Cavalos , Masculino , Qualidade de Vida , Reprodutibilidade dos Testes , Estresse Mecânico , Resistência à Tração/fisiologia
10.
Cells Tissues Organs ; 201(3): 220-31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26796341

RESUMO

The infrapatellar fat pad (IFP) can be regarded as a peculiar form of fibro-adipose tissue localized close to the synovial membrane and articular cartilage. The aims of the present study were to analyze the microscopic anatomy of the IFP through histological and ultrastructural methods, comparing it with that of the subcutaneous tissue of the abdomen and of the knee. Ten specimens of IFP were sampled from bodies of the Donation Program of the University of Padua without a history of osteoarthritis. The IFP consisted of white adipose tissue, of lobular type, with lobules delimited by thin connective septa. The IFP lobule areas were smaller (p < 0.05) and the interlobular septa were thicker (p > 0.05) than those of subcutaneous tissues of the abdomen, whereas the IFP lobule areas were larger (p < 0.05) and the interlobular septa were thinner than those of the subcutaneous tissue of the knee (p < 0.05). The IFP adipocytes present a mean area of 3,708 ± 976 µm2 with a large intercellular space, whereas the mean area of the abdominal tissues was greater (6,082 ± 628 µm2; p < 0.05). At scanning electron microscopy the IFP adipocytes were covered by thick fibrillary sheaths, creating a basket around the adipocytes. The structural characteristics of the IFP (lobular aspect of the adipose tissue, thickness of the septa with scarce elastic fibers) could act as a plastic portion aimed at the absorption of pressure variation during knee articular activity. The extensive distribution of nerves suggests a possible role of the IFP as a mechanoreceptor, corresponding to a tridimensional connective mesh working in the proprioceptive regulation of the activity of the knee joint.


Assuntos
Tecido Adiposo/ultraestrutura , Joelho/anatomia & histologia , Abdome/anatomia & histologia , Adipócitos/ultraestrutura , Idoso , Idoso de 80 Anos ou mais , Cartilagem Articular/anatomia & histologia , Feminino , Humanos , Articulação do Joelho/anatomia & histologia , Masculino , Microscopia , Gordura Subcutânea/ultraestrutura , Membrana Sinovial/anatomia & histologia
11.
J Mech Behav Biomed Mater ; 157: 106637, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38914036

RESUMO

Superficial fascia is a fibrofatty tissue found throughout the body. Initially described in relation to hernias, it has only recently received attention from the scientific community due to new evidence on its role in force transmission and structural integrity of the body. Considering initial difficulties in its anatomical identification, to date, a characterization of the superficial fascia through mechanical tests is still lacking. The mechanical properties of human superficial fasciae of abdominal and thoracic districts (back) of different subjects (n = 4) were then investigated, focusing on anisotropy and viscoelasticity. Experimental tests were performed on samples taken in two perpendicular directions according to body planes (cranio-caudal and latero-medial axes). Data collected from two different uniaxial tensile protocols, failure (i.e., ultimate tensile strength and strain at break, Young's modulus and toughness) and stress-relaxation (i.e., residual stress), were processed and then grouped for statistical analysis. Failure tests confirmed tissue anisotropy, revealing the stiffer nature of the latero-medial direction compared to the cranio-caudal one, for both the districts (with a ratio of the respective Young's moduli close to 2). Furthermore, the thoracic region exhibited significantly greater strength and resultant Young's modulus compared to the abdomen (with greater results along the latero-medial direction, such as 6.13 ± 3.11 MPa versus 0.85 ± 0.39 MPa and 24.87 ± 15.23 MPa versus 3.19 ± 1.62 MPa, respectively). On the contrary, both regions displayed similar strain at break (varying between 38 and 47%), with no clear dependence from the loading directions. Stress-relaxation tests highlighted the viscous behavior of the superficial fascia, with no significant differences in the stress decay between directions and districts (35-38% of residual stress after 300 s). All these collected results represent the starting point for a more in-depth knowledge of the mechanical characterization of the superficial fascia, which can have direct implications in the design, implementation, and effectiveness of site-specific treatments.

12.
Phys Eng Sci Med ; 47(2): 403-441, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38598066

RESUMO

Healthy cornea guarantees the refractive power of the eye and the protection of the inner components, but injury, trauma or pathology may impair the tissue shape and/or structural organization and therefore its material properties, compromising its functionality in the ocular visual process. It turns out that biomechanical research assumes an essential role in analysing the morphology and biomechanical response of the cornea, preventing pathology occurrence, and improving/optimising treatments. In this review, ex vivo, in vivo and in silico methods for the corneal mechanical characterization are reported. Experimental techniques are distinct in testing mode (e.g., tensile, inflation tests), samples' species (human or animal), shape and condition (e.g., healthy, treated), preservation methods, setup and test protocol (e.g., preconditioning, strain rate). The meaningful results reported in the pertinent literature are discussed, analysing differences, key features and weaknesses of the methodologies adopted. In addition, numerical techniques based on the finite element method are reported, incorporating the essential steps for the development of corneal models, such as geometry, material characterization and boundary conditions, and their application in the research field to extend the experimental results by including further relevant aspects and in the clinical field for diagnostic procedure, treatment and planning surgery. This review aims to analyse the state-of-art of the bioengineering techniques developed over the years to study the corneal biomechanics, highlighting their potentiality to improve diagnosis, treatment and healing process of the corneal tissue, and, at the same, pointing out the current limits in the experimental equipment and numerical tools that are not able to fully characterize in vivo corneal tissues non-invasively and discourage the use of finite element models in daily clinical practice for surgical planning.


Assuntos
Simulação por Computador , Córnea , Córnea/fisiologia , Humanos , Fenômenos Biomecânicos , Animais , Análise de Elementos Finitos , Modelos Biológicos
13.
Bioengineering (Basel) ; 11(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38790303

RESUMO

The production of biomedical devices able to appropriately interact with the biological environment is still a great challenge. Synthetic materials are often employed, but they fail to replicate the biological and functional properties of native tissues, leading to a variety of adverse effects. Several commercial products are based on chemically treated xenogeneic tissues: their principal drawback is due to weak mechanical stability and low durability. Recently, decellularization has been proposed to bypass the drawbacks of both synthetic and biological materials. Acellular materials can integrate with host tissues avoiding/mitigating any foreign body response, but they often lack sufficient patency and impermeability. The present paper investigates an innovative approach to the realization of hybrid materials that combine decellularized bovine pericardium with polycarbonate urethanes. These hybrid materials benefit from the superior biocompatibility of the biological tissue and the mechanical properties of the synthetic polymers. They were assessed from physicochemical, structural, mechanical, and biological points of view; their ability to promote cell growth was also investigated. The decellularized pericardium and the polymer appeared to well adhere to each other, and the two sides were distinguishable. The maximum elongation of hybrid materials was mainly affected by the pericardium, which allows for lower elongation than the polymer; this latter, in turn, influenced the maximum strength achieved. The results confirmed the promising features of hybrid materials for the production of vascular grafts able to be repopulated by circulating cells, thus, improving blood compatibility.

14.
Bioengineering (Basel) ; 10(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36829669

RESUMO

Hollow organs are visceral organs that are hollow tubes or pouches (such as the intestine or the stomach, respectively) or that include a cavity (such as the heart) and which subserve a vital function [...].

15.
Comput Methods Programs Biomed ; 238: 107594, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37207463

RESUMO

BACKGROUND AND OBJECTIVE: In the field of urology, the pressure-flow study (PFS) is an essential urodynamics practise which requires the patient's transurethral catheterization during the voiding phase of micturition to evaluate the functionality of the lower urinary tract (LUT) and reveal the pathophysiology of its dysfunctionality. However, the literature evidences confusion regarding the interference of the catheterization on the urethral pressure-flow behaviour. METHODS: The present research study represents the first Computational Fluid-Dynamics (CFD) approach to this urodynamics issue, analysing the influence of a catheter in the male LUT through case studies which included the inter-individual and intra-individual dependence. A set of four three dimensional (3D) models of the male LUT, different in urethral diameters, and a set of three 3D models of the transurethral catheter, diverse in calibre, were developed leading to 16 CFD non-catheterized either catheterized configurations, to describe the typical micturition scenario considering both urethra and catheter characteristics. RESULTS: The developed CFD simulations showed that the urine flow field during micturition was influenced by the urethral cross-sectional area and each catheter determined a specific decrease in flow rate if compared to the relative free uroflow. CONCLUSIONS: In-silico methods allow to analyse relevant urodynamics aspects, which could not be investigated in vivo, and may support the clinical PFS to reduce uncertainty on urodynamic diagnosis.


Assuntos
Uretra , Bexiga Urinária , Humanos , Masculino , Micção/fisiologia , Catéteres , Urodinâmica/fisiologia
16.
Life (Basel) ; 13(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38137878

RESUMO

It is a common experience, reported by patients who have undergone manual therapy that uses deep friction, to perceive soreness in treatment areas; however, it is still not clear what causes it and if it is therapeutically useful or a simple side effect. The purpose of this narrative review is to determine whether manual and physical therapies can catalyze an inflammatory process driven by HA fragments. The literature supports the hypothesis that mechanical stress can depolymerize into small pieces at low molecular weight and have a high inflammatory capacity. Many of these pieces are then further degraded into small oligosaccharides. Recently, it has been demonstrated that oligosaccharides are able to stop this inflammatory process. These data support the hypothesis that manual therapy that uses deep friction could metabolize self-aggregated HA chains responsible for increasing loose connective tissue viscosity, catalyzing a local HA fragment cascade that will generate soreness but, at the same time, facilitate the reconstitution of the physiological loose connective tissue properties. This information can help to explain the meaning of the inflammatory process as well as the requirement for it for the long-lasting resolution of these alterations.

17.
Bioengineering (Basel) ; 10(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36829631

RESUMO

By leveraging the recent development of artificial intelligence algorithms, several medical sectors have benefited from using automatic segmentation tools from bioimaging to segment anatomical structures. Segmentation of the musculoskeletal system is key for studying alterations in anatomical tissue and supporting medical interventions. The clinical use of such tools requires an understanding of the proper method for interpreting data and evaluating their performance. The current systematic review aims to present the common bottlenecks for musculoskeletal structures analysis (e.g., small sample size, data inhomogeneity) and the related strategies utilized by different authors. A search was performed using the PUBMED database with the following keywords: deep learning, musculoskeletal system, segmentation. A total of 140 articles published up until February 2022 were obtained and analyzed according to the PRISMA framework in terms of anatomical structures, bioimaging techniques, pre/post-processing operations, training/validation/testing subset creation, network architecture, loss functions, performance indicators and so on. Several common trends emerged from this survey; however, the different methods need to be compared and discussed based on each specific case study (anatomical region, medical imaging acquisition setting, study population, etc.). These findings can be used to guide clinicians (as end users) to better understand the potential benefits and limitations of these tools.

18.
Bioengineering (Basel) ; 10(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36829719

RESUMO

Human Fascia Lata (FL) is a connective tissue with a multilayered organization also known as aponeurotic fascia. FL biomechanics is influenced by its composite structure formed by fibrous layers (usually two) separated by loose connective tissue. In each layer, most of the collagen fibers run parallel in a distinct direction (with an interlayer angle that usually ranges from 75-80°), mirroring the fascia's ability to adapt and withstand specific tensile loads. Although FL is a key structure in several musculoskeletal dysfunctions and in tissue engineering, literature still lacks the evidence that proves tissue anisotropy according to predominant collagen fiber directions. For this purpose, this work aims to analyze the biomechanical properties of ex-vivo FL (collected from fresh-frozen human donors) by performing uniaxial tensile tests in order to highlight any differences with respect to loading directions. The experimental outcomes showed a strong anisotropic behavior in accordance with principal collagen fibers directions, which characterize the composite structure. These findings have been implemented to propose a first constitutive model able to mimic the intra- and interlayer interactions. Both approaches could potentially support surgeons in daily practices (such as graft preparation and placement), engineers during in silico simulation, and physiotherapists during musculoskeletal rehabilitation, to customize a medical intervention based on each specific patient and clinical condition.

19.
Biomedicines ; 11(7)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37509581

RESUMO

Biomechanical studies are expanding across a variety of fields, from biomedicine to biomedical engineering. From the molecular to the system level, mechanical stimuli are crucial regulators of the development of organs and tissues, their growth and related processes such as remodelling, regeneration or disease. When dealing with cell mechanics, various experimental techniques have been developed to analyse the passive response of cells; however, cell variability and the extraction process, complex experimental procedures and different models and assumptions may affect the resulting mechanical properties. For these purposes, this review was aimed at collecting the available literature focused on experimental chondrocyte and chondron biomechanics with direct connection to their biochemical functions and activities, in order to point out important information regarding the planning of an experimental test or a comparison with the available results. In particular, this review highlighted (i) the most common experimental techniques used, (ii) the results and models adopted by different authors, (iii) a critical perspective on features that could affect the results and finally (iv) the quantification of structural and mechanical changes due to a degenerative pathology such as osteoarthritis.

20.
Bioengineering (Basel) ; 11(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38247919

RESUMO

Plantar adipose tissue is a connective tissue whose structural configuration changes according to the foot region (rare or forefoot) and is related to its mechanical role, providing a damping system able to adsorb foot impact and bear the body weight. Considering this, the present work aims at fully describing the plantar adipose tissue's behaviour and developing a proper constitutive formulation. Unconfined compression tests and indentation tests have been performed on samples harvested from human donors and cadavers. Experimental results provided the initial/final elastic modulus for each specimen and assessed the non-linear and time-dependent behaviour of the tissue. The different foot regions were investigated, and the main differences were observed when comparing the elastic moduli, especially the final elastic ones. It resulted in a higher level for the medial region (89 ± 77 MPa) compared to the others (from 51 ± 29 MPa for the heel pad to 11 ± 7 for the metatarsal). Finally, results have been used to define a visco-hyperelastic constitutive model, whose hyperelastic component, which describes tissue non-linear behaviour, was described using an Ogden formulation. The identified and validated tissue constitutive parameters could serve, in the early future, for the computational model of the healthy foot.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA