Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neuroinflammation ; 16(1): 115, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31151410

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a major cause of death and disability in the USA and the world; it constitutes 30% of injury-related deaths (Taylor et al., MMWR Surveill Summ 66:1-16, 2017). Contact sports athletes often experience repetitive TBI (rTBI), which exerts a cumulative effect later in life. Visual impairment is a common after-effect of TBI. Previously, we have shown that C-C chemokine 20 (CCL20) plays a critical role in neurodegeneration and inflammation following TBI (Das et al., J Neuroinflammation 8:148, 2011). C-C chemokine receptor 6 (CCR6) is the only receptor that CCL20 interacts with. The objective of the present study was to investigate the role of CCL20-CCR6 axis in mediating rTBI-induced visual dysfunction (TVD). METHODS: Wild type (WT) or CCR6 knock out (CCR6-/-) mice were subjected to closed head rTBI. Pioglitazone (PG) is a peroxisome proliferator-activated receptor γ (PPARγ) agonist which downregulates CCL20 production. Subsets of WT mice were treated with PG following final rTBI. A subset of mice was also treated with anti-CCL20 antibody to neutralize the CCL20 produced after rTBI. Histopathological assessments were performed to show cerebral pathologies, retinal pathologies, and inflammatory changes induced by rTBI. RESULTS: rTBI induced cerebral neurodegeneration, retinal degeneration, microgliosis, astrogliosis, and CCL20 expression. CCR6-/- mice showed reduced retinal degeneration, microgliosis, and inflammation. Treatment with CCL20 neutralization antibody or PG showed reduced CCL20 expression along with reduced retinal degeneration and inflammation. rTBI-induced GFAP-positive glial activation in the optic nerve was not affected by knocking out CCR6. CONCLUSION: The present data indicate that rTBI-induced retinal pathology is mediated at least in part by CCL20 in a CCR6-dependent manner.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Quimiocina CCL20/metabolismo , Receptores CCR6/metabolismo , Retina/metabolismo , Animais , Lesões Encefálicas Traumáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR6/deficiência , Retina/patologia
2.
Metab Brain Dis ; 34(2): 631-640, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30612292

RESUMO

The aim of this study was to determine whether leukemia inhibitory factor (LIF) exerts its neuroprotective effects through signal transduction of the transcription factor myeloid zinc finger-1 (MZF-1). According to the hypothesis of this study, MZF-1 mediates LIF-induced neuroprotective signaling during ELVO through increased expression and transcriptional activity. To determine the in vivo role of MZF-1 in LIF-induced neuroprotection, we used Genomatix software was used to MZF-1 sites in the promoter region of the rat superoxide dismutase 3 (SOD3) gene. Stroke was induced via middle cerebral artery occlusion, and animals were administered PBS or 125 µg/kg LIF at 6, 24, and 48 h after the injury. MZF-1 binding activity was measured using electrophoretic mobility shift assay (EMSA) and its expression/localization were determined using western blot and immunohistochemical analysis. To determine whether MZF-1 relays LIF-induced neuroprotection in vitro, primary cultured neurons were subjected to oxygen-glucose deprivation (OGD) after treatment with PBS or LIF. MZF-1 expression was measured in vitro using real time PCR and immunohistochemical staining. Transfection with siRNA was used to determine whether LIF protected cultured neurons against OGD after silencing MZF-1 expression. Four MZF-1 binding sites were identified by Genomatix, and EMSA confirmed in vivo binding activity in brain after MCAO. LIF significantly increased MZF-1 protein levels compared to PBS treatment at 72 h post-MCAO. In vivo nuclear localization of MZF-1 as well as co-localization of SOD3 and MZF-1 was observed in the cortical neurons of LIF-treated rats. Primary cultured neurons treated with LIF had significantly higher levels of MZF-1 mRNA and protein after LIF treatment compared to neurons treated with PBS. Finally, knockdown MZF-1 using siRNA counteracted the neuroprotective effects of LIF in vitro. These data demonstrate that LIF-mediated neuroprotection is dependent upon MZF-1 activity. Furthermore, these findings identify a novel neuroprotective pathway that employs MZF-1, a transcription factor associated with hematopoietic gene expression.


Assuntos
Fator Inibidor de Leucemia/metabolismo , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Dedos de Zinco/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/fisiologia , Ratos Sprague-Dawley , Acidente Vascular Cerebral/metabolismo
3.
J Neuroinflammation ; 15(1): 288, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30322390

RESUMO

BACKGROUND: The migration of peripheral immune cells and splenocytes to the ischemic brain is one of the major causes of delayed neuroinflammation after permanent large vessel stroke. Other groups have demonstrated that leukemia inhibitory factor (LIF), a cytokine that promotes neural cell survival through upregulation of antioxidant enzymes, promotes an anti-inflammatory phenotype in several types of immune cells. The goal of this study was to determine whether LIF treatment modulates the peripheral immune response after stroke. METHODS: Young male (3 month) Sprague-Dawley rats underwent sham surgery or permanent middle cerebral artery occlusion (MCAO). Animals were administered LIF (125 µg/kg) or PBS at 6, 24, and 48 h prior to euthanization at 72 h. Bone marrow-derived macrophages were treated with LIF (20 ng/ml) or PBS after stimulation with interferon gamma + LPS. Western blot was used to measure protein levels of CD11b, IL-12, interferon inducible protein-10, CD3, and the LIF receptor in spleen and brain tissue. ELISA was used to measure IL-10, IL-12, and interferon gamma. Isolectin was used to label activated immune cells in brain tissue sections. Statistical analysis was performed using one-way ANOVA and Student's t test. A Kruskal-Wallis test followed by Bonferroni-corrected Mann-Whitney tests was performed if data did not pass the D'Agostino-Pearson normality test. RESULTS: LIF-treated rats showed significantly lower levels of the LIF receptor and interferon gamma in the spleen and CD11b levels in the brain compared to their PBS-treated counterparts. Fluorescence from isolectin-binding immune cells was more prominent in the ipsilateral cortex and striatum after PBS treatment compared to LIF treatment. MCAO + LIF significantly decreased splenic levels of CD11b and CD3 compared to sham surgery. MCAO + PBS treatment significantly elevated splenic levels of interferon inducible protein-10 at 72 h after MCAO, while LIF treatment after MCAO returned interferon inducible protein 10 to sham levels. LIF administration with interferon gamma + LPS significantly reduced the IL-12/IL-10 production ratio compared to macrophages treated with interferon gamma + LPS alone. CONCLUSIONS: These data demonstrate that LIF promotes anti-inflammatory signaling through alterations of the IL-12/interferon gamma/interferon inducible protein 10 pathway.


Assuntos
Citocinas/metabolismo , Infarto da Artéria Cerebral Média , Fator Inibidor de Leucemia/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Técnicas de Cultura de Células , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/imunologia , Infarto da Artéria Cerebral Média/patologia , Interferon gama/uso terapêutico , Lectinas/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Baço/efeitos dos fármacos , Baço/patologia , Estatísticas não Paramétricas , Fatores de Tempo
4.
J Stroke Cerebrovasc Dis ; 27(10): 2746-2754, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30068479

RESUMO

BACKGROUND AND PURPOSE: Acid/base and electrolytes could provide clinically valuable information about cerebral infarct core and penumbra. We evaluated associations between acid/base and electrolyte changes and outcomes in 2 rat models of stroke, permanent, and transient middle cerebral artery occlusion. METHODS: Three-month old Sprague-Dawley rats underwent permanent or transient middle cerebral artery occlusion. Pre- and post-middle cerebral artery occlusion venous samples for permanent and transient models provided pH, carbon dioxide, oxygen, glucose, and electrolyte values of ionized calcium, potassium, and sodium. Multiple regression determined predictors of infarct volume from these values, and Kaplan-Meier curve analyzed morality between permanent and transient middle cerebral artery occlusion models. RESULTS: Analysis indicated significant differences in the blood gas and electrolytes between pre- to post-middle cerebral artery occlusion. A decrease in pH and sodium with increases in carbon dioxide, potassium, ionized calcium, and glucose changes were found in both middle cerebral artery occlusion models; while hematocrit and hemoglobin were significant in the transient model. pH and ionized calcium were predictors of infarct volume in the permanent model, as changes in pH and ionized calcium decreased, infarct volume increased. CONCLUSIONS: There are acute changes in acid/base balance and electrolytes during stroke in transient and permanent rodent models. Additionally, we found pH and ionized calcium changes predicted stroke volume in the permanent middle cerebral artery occlusion model. These preliminary findings are novel, and warrant further exploration in human conditions.


Assuntos
Equilíbrio Ácido-Base , Infarto da Artéria Cerebral Média/fisiopatologia , Equilíbrio Hidroeletrolítico , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Cálcio/sangue , Dióxido de Carbono/sangue , Modelos Animais de Doenças , Hemoglobinas/metabolismo , Concentração de Íons de Hidrogênio , Infarto da Artéria Cerebral Média/sangue , Infarto da Artéria Cerebral Média/patologia , Oxigênio/sangue , Potássio/sangue , Ratos Sprague-Dawley , Sódio/sangue , Fatores de Tempo
5.
FASEB Bioadv ; 2(2): 90-105, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32123859

RESUMO

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) provide clinical benefits over chemotherapy for lung cancer patients with EGFR activating mutations. Despite initial clinical responses, long-term efficacy is not possible because of acquired resistance to these therapies. We have developed EGFR TKI drug-tolerant (DT) human lung cancer cell lines as a model for de novo resistance. Mass spectroscopic analysis revealed that the cytochrome P450 protein, CYP51A1 (Lanosterol 14α-demethylase), which is directly involved with cholesterol synthesis, was significantly upregulated in the DT cells. Total cellular cholesterol, and more specifically, mitochondrial cholesterol, were found to be upregulated in DT cells. We then used the CYP51A1 inhibitor, ketoconazole, to downregulate cholesterol synthesis. In both parental and DT cells, ketoconazole and EGFR TKIs acted synergistically to induce apoptosis and overcome the development of EGFR tolerance. Lastly, this combination therapy was shown to shrink the growth of tumors in an in vivo mouse model of EGFR TKI resistance. Thus, our study demonstrates for the first time that ketoconazole treatment inhibits upregulation of mitochondrial cholesterol and thereby overcomes EGFR-TKI resistance in lung cancer cells.

6.
Sci Rep ; 9(1): 13646, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541141

RESUMO

Traumatic brain injury is a leading cause of death and disability around the world. So far, drugs are not available to repair brain damage. Human mesenchymal stem cell (hMSC) transplantation therapy is a promising approach, although the inflammatory microenvironment of the injured brain affects the efficacy of transplanted hMSCs. We hypothesize that reducing the inflammation in the cerebral microenvironment by reducing pro-inflammatory chemokines prior to hMSC administration will improve the efficacy of hMSC therapy. In a rat model of lateral fluid percussion injury, combined pioglitazone (PG) and hMSC (combination) treatment showed less anxiety-like behavior and improved sensorimotor responses to a noxious cold stimulus. Significant reduction in brain lesion volume, neurodegeneration, microgliosis and astrogliosis were observed after combination treatment. TBI induced expression of inflammatory chemokine CCL20 and IL1-ß were significantly decreased in the combination treatment group. Combination treatment significantly increased brain-derived neurotrophic factor (BDNF) level and subventricular zone (SVZ) neurogenesis. Taken together, reducing proinflammatory cytokine expression in the cerebral tissues after TBI by PG administration and prior to hMSC therapy improves the outcome of the therapy in which BDNF could have a role.


Assuntos
Anti-Inflamatórios/administração & dosagem , Lesões Encefálicas Traumáticas/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Pioglitazona/administração & dosagem , Administração Intranasal , Animais , Anti-Inflamatórios/farmacologia , Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/imunologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Quimiocina CCL20/metabolismo , Terapia Combinada , Modelos Animais de Doenças , Feminino , Humanos , Interleucina-1beta/metabolismo , Ventrículos Laterais/metabolismo , Masculino , Pioglitazona/farmacologia , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Regulação para Cima
7.
Sci Rep ; 9(1): 18177, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796785

RESUMO

The failure of lung cancer treatments has been attributed mostly to the development of drug resistance, however the underlying cellular and molecular mechanisms are poorly understood. Cancer initiating stem cells (CSCs), present in tumors in a small percentage, play critical roles in the development of drug resistance, metastasis, and cancer relapse. Hence, novel treatments targeting both bulk cancer cells and CSCs are under intense investigation. Herein, we report that lung cancer cells grown on a 3D fibrous scaffold form tumoroids that resemble in vivo tumors, expand CSCs, and provide a platform to identify anti-CSC drugs. The screening of an NCI library of FDA-approved drugs using tumoroid cultures led to identification of Actinomycin D (AD) as a top CSC inhibitor. Since CSCs are mostly resident in the tumor's inner core, AD was combined with an angiotensin receptor antagonist, Telmisartan (TS), which is known to increase drug permeability in tumors and was shown to have anti-CSC activity. Our results showed that AD + TS administered intra-tumorally was significantly more effective than either drug alone in both syngeneic and xenograft mouse models. The results of mechanistic studies revealed that CSC expansion in tumoroids was associated with activation of ß catenin signaling and that AD + TS treatment reduced active ß catenin levels in tumors. Together, these results establish the utility of the tumoroid culture system to expand CSCs ex vivo for targeted drug screening, to identify promising novel treatments with both anti-CSC and anti-cancer effects, and to individualize treatments for metastatic drug resistant lung cancer patients.


Assuntos
Dactinomicina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Telmisartan/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/metabolismo , Células-Tronco Neoplásicas/metabolismo
8.
Mil Med ; 184(11-12): e626-e631, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31004163

RESUMO

INTRODUCTION: The United States has been actively involved in major armed conflicts over the last 15 years. As a result, a significant proportion of active duty service personnel and returning veterans have endured combat, putting them at risk for developing post-traumatic stress disorder (PTSD), a disabling disorder that may occur after exposure to a traumatic event. Current therapies often require long-term, time-intensive and costly commitment from the patient and have variable degrees of success. There remains an ongoing need for better therapies, including complementary medicine approaches that can effectively reduce PTSD symptoms. While anecdotal evidence suggests that routine practice of Brazilian Jiu Jitsu (BJJ) can reduce symptoms of PTSD, there have been no formal studies to address this. MATERIALS AND METHODS: This study was approved by the University of South Florida Institutional Review Board (#PRO00019430). Male US active duty service members and veterans from the Tampa area participated in a 5-month (40 sessions) BJJ training program. Before beginning and again midway through and upon completion of training the participants completed several validated self-report measures that addressed symptoms of PTSD and other co-morbid conditions. Effect size and 95% confidence intervals were determined using a within-person single-group pretest-posttest design. RESULTS: Study participants demonstrated clinically meaningful improvements in their PTSD symptoms as well as decreased symptoms of major depressive disorder, generalized anxiety and decreased alcohol use; effect sizes varied from 0.80 to 1.85. CONCLUSIONS: The results from this first-of-kind pilot study suggest that including BJJ as a complementary treatment to standard therapy for PTSD may be of value. It will be necessary to validate these promising results with a larger subject cohort and a more rigorous experimental design before routinely recommending this complementary therapy.


Assuntos
Artes Marciais/psicologia , Militares/psicologia , Transtornos de Estresse Pós-Traumáticos/terapia , Veteranos/psicologia , Adulto , Feminino , Florida , Humanos , Masculino , Artes Marciais/educação , Artes Marciais/estatística & dados numéricos , Militares/estatística & dados numéricos , Projetos Piloto , Psicometria/instrumentação , Psicometria/métodos , Transtornos de Estresse Pós-Traumáticos/psicologia , Inquéritos e Questionários , Estados Unidos , Veteranos/estatística & dados numéricos
9.
Cell Transplant ; 26(10): 1694-1702, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29251108

RESUMO

The toxic side effects of doxorubicin (Dox) limit its long-term use as a lung cancer chemotherapeutic. Additionally, drug delivery to the deep lung is challenging. To address these challenges, isolated rat Sertoli cells (SCs) were preloaded with Dox conjugated to lipid micelle nanoparticles (SC-DLMNs) and delivered to mouse lungs. These immunocompetent cells, when injected intravenously, travel to the lung, deliver the payload, and get cleared by the system quickly without causing any adverse reaction. We observed that SC-DLMNs effectively treated Lewis lung carcinoma 1-induced lung tumors in mice and the drug efficacy was comparable to SC-Dox treatment. Mice treated with SC-DLMNs also showed significantly less toxicity compared to those treated with SC-Dox. The encapsulation of Dox in lipid micelle nanoparticles reduced the toxicity of Dox and the SC-based delivery method ensured drug delivery to the deep lung without evoking any immune response. Taken together, these results provide a novel SC-based nanoparticle drug delivery method for improved therapeutic outcome of cardiotoxic antilung cancer drugs.


Assuntos
Doxorrubicina/uso terapêutico , Nanopartículas/metabolismo , Células de Sertoli/metabolismo , Carga Tumoral/fisiologia , Animais , Doxorrubicina/farmacologia , Humanos , Lipídeos , Masculino , Camundongos , Micelas , Microscopia Confocal , Ratos Sprague-Dawley
10.
Cell Transplant ; 24(4): 721-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25413246

RESUMO

Human umbilical cord blood (HUCB) cell therapies have shown promising results in reducing brain infarct volume and most importantly in improving neurobehavioral function in rat permanent middle cerebral artery occlusion, a model of stroke. In this study, we examined the gene expression profile in neurons subjected to oxygen-glucose deprivation (OGD) with or without HUCB treatment and identified signaling pathways (Akt/MAPK) important in eliciting HUCB-mediated neuroprotective responses. Gene chip microarray analysis was performed using RNA samples extracted from the neuronal cell cultures from four experimental groups: normoxia, normoxia+HUCB, OGD, and OGD+HUCB. Both quantitative RT-PCR and immunohistochemistry were carried out to verify the microarray results. Using the Genomatix software program, promoter regions of selected genes were compared to reveal common transcription factor-binding sites and, subsequently, signal transduction pathways. Under OGD condition, HUCB cells significantly reduced neuronal loss from 68% to 44% [one-way ANOVA, F(3, 16)=11, p=0.0003]. Microarray analysis identified mRNA expression of Prdx5, Vcam1, CCL20, Alcam, and Pax6 as being significantly altered by HUCB cell treatment. Inhibition of the Akt pathway significantly abolished the neuroprotective effect of HUCB cells [one-way ANOVA, F(3, 11)=8.663, p=0.0031]. Our observations show that HUCB neuroprotection is dependent on the activation of the Akt signaling pathway that increases transcription of the Prdx5 gene. We concluded that HUCB cell therapy would be a promising treatment for stroke and other forms of brain injury by modifying acute gene expression to promote neural cell protection.


Assuntos
Sangue Fetal/metabolismo , Regulação da Expressão Gênica , Infarto da Artéria Cerebral Média/patologia , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transcriptoma , Animais , Sítios de Ligação , Células Cultivadas , Técnicas de Cocultura , Sangue Fetal/citologia , Sangue Fetal/transplante , Humanos , Imuno-Histoquímica , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/terapia , Neurônios/citologia , Fármacos Neuroprotetores , Análise de Sequência com Séries de Oligonucleotídeos , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA