RESUMO
BACKGROUND: Although microvascular dysfunction is known to result from diabetes, it might also lead to diabetes. Lower values of C2, a derivative of the radial artery pressure waveform, indicate microvascular dysfunction and predict hypertension and cardiovascular disease (CVD). We studied the association of C2 with incident diabetes in subjects free of overt CVD. METHODS: Among multi-ethnic participants (n = 5214), aged 45-84 years with no diabetes, C2 was derived from the radial artery pressure waveform. Incident diabetes (N = 651) was diagnosed as new fasting glucose ≥ 126 mg/dL or antidiabetic medicine over ~ 10 years. The relative incidence density (RID) for incident diabetes per standard deviation (SD) of C2 was studied during ~ 10 years follow-up using four levels of adjustment. RESULTS: Mean C2 at baseline was 4.58 ± 2.85 mL/mmHg × 100. The RID for incident diabetes per SD of C2 was 0.90 (95% CI 0.82-0.99, P = 0.03). After adjustment for demographics plus body size, the corresponding RID was 0.81 (95% CI 0.73-0.89, P < 0.0001); body mass index (BMI) was the dominant covariate here. After adjustment for demographics plus cardiovascular risk factors, the RID was 0.98 (95% CI 0.89, 1.07, P = 0.63). After adjustment for all the parameters in the previous models, the RID was 0.87 (95% CI 0.78, 0.96, P = 0.006). CONCLUSIONS: In a multi-ethnic sample free of overt CVD and diabetes at baseline, C2 predicted incident diabetes after adjustment for demographics, BMI and CVD risk factors. Differences in arterial blood pressure wave morphology may indicate a long-term risk trajectory for diabetes, independently of body size and the classical risk factors.