Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 136(24): 244903, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22755599

RESUMO

In this work, a quantitative comparison between experimental swelling data of thermo-sensitive microgels and computer simulation results obtained from a coarse-grained model of polyelectrolyte network and the primitive model of electrolyte is carried out. Polymer-polymer hydrophobic forces are considered in the model through a solvent-mediated interaction potential whose depth increases with temperature. The qualitative agreement between simulation and experiment is very good. In particular, our simulations predict a gradual shrinkage with temperature, which is actually observed for the microgels studied in this survey. In addition, the model can explain the swelling behavior for different contents of ionizable groups without requiring changes in the hydrophobic parameters. Our work also reveals that the abruptness of the shrinkage of charged gels is considerably conditioned by the number of monomeric units per chain. The swelling data are also analyzed with the Flory-Rhener theory, confirming some limitations of this classical formalism.


Assuntos
Simulação por Computador , Géis , Concentração de Íons de Hidrogênio , Polímeros/química , Temperatura
2.
Langmuir ; 27(11): 7222-30, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21526807

RESUMO

Due to the existing interest in new hybrid particles in the colloidal range based on both magnetic and polymeric materials for applications in biotechnological fields, this work is focused on the preparation of magnetic polymer nanoparticles (MPNPs) by a single-step miniemulsion process developed to achieve better control of the morphology of the magnetic nanocomposite particles. MPNPs are prepared by surfactant-free miniemulsion polymerization using styrene (St) as a monomer, hexadecane (HD) as a hydrophobe, and potassium persulfate (KPS) as an initiator in the presence of oleic acid (OA)-modified magnetite nanoparticles. The effect of the type of cross-linker used [divinylbenzene (DVB) and bis[2-(methacryloyloxy)ethyl] phosphate (BMEP)] together with the effect of the amount of an aid stabilizer (dextran) on size, particle size distribution (PSD), and morphology of the hybrid nanoparticles synthesized is analyzed in detail. The mixture of different surface modifiers produces hybrid nanocolloids with various morphologies: from a typical core-shell composed by a magnetite core surrounded by a polymer shell to a homogeneously distributed morphology where the magnetite is uniformly distributed throughout the entire nanocomposite.


Assuntos
Nanopartículas de Magnetita/química , Polimerização , Dextranos/química , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Tensoativos/química
4.
Mater Sci Eng C Mater Biol Appl ; 104: 109871, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31499979

RESUMO

The present work investigates the potentiality of poly(N-vinyl caprolactam) (PVCL)-based thermoresponsive microgels decorated with cationic polymer brushes as drug delivery carriers. The effect of physico-chemical features of the colloids on cell viability response have to be carefully investigated to establish the range of suitable hydrodynamic diameters, crosslinking densities, lengths and ratios of the cationic polyelectrolyte shell which allow their efficient and effective use for cargo loading, transport and delivery. The colloidal stability of all cationic thermoresponsive microgels is maintained over several days of incubation at 37 °C in biological mimicking medium (Dulbecco's Modified Eagle's Medium supplemented with fetal bovine serum). The thin cationic polymer shell covalently anchored does not hinder the all range of microgels to be biocompatible while the higher cytotoxicity of the doxorubicin-loaded microgels on HeLa cells proves their anti-tumor activity. The core-shell PVCL drug delivery nanocarriers allow a sustained release of doxorubicin with a slightly higher viability of HeLa cells incubated in the presence of DOXO-loaded microgels compared to the free DOXO. The nature of the endocytosis pathway is investigated through a quantification of the extent of the cellular survival rate in the presence of various cellular uptake inhibitors. A clathrin-dependent internalization was observed.


Assuntos
Caprolactama/análogos & derivados , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Microgéis/química , Nanopartículas/química , Polímeros/química , Temperatura , Animais , Caprolactama/química , Cátions , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Coloides/química , Doxorrubicina/farmacologia , Células HeLa , Humanos , Hidrodinâmica , Camundongos , Células RAW 264.7 , Fatores de Tempo
5.
Gels ; 3(2)2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30920515

RESUMO

Nanogels (NGs) are currently under extensive investigation due to their unique properties, such as small particle size, high encapsulation efficiency and protection of active agents from degradation, which make them ideal candidates as drug delivery systems (DDS). Stimuli-responsive NGs are cross-linked nanoparticles (NPs), composed of polymers, natural, synthetic, or a combination thereof that can swell by absorption (uptake) of large amounts of solvent, but not dissolve due to the constituent structure of the polymeric network. NGs can undergo change from a polymeric solution (swell form) to a hard particle (collapsed form) in response to (i) physical stimuli such as temperature, ionic strength, magnetic or electric fields; (ii) chemical stimuli such as pH, ions, specific molecules or (iii) biochemical stimuli such as enzymatic substrates or affinity ligands. The interest in NGs comes from their multi-stimuli nature involving reversible phase transitions in response to changes in the external media in a faster way than macroscopic gels or hydrogels due to their nanometric size. NGs have a porous structure able to encapsulate small molecules such as drugs and genes, then releasing them by changing their volume when external stimuli are applied.

6.
Langmuir ; 23(26): 12893-900, 2007 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18031070

RESUMO

Self-stabilized magnetic polymeric composite nanoparticles (SS-MPCPs) were prepared by emulsifier-free miniemulsion polymerization using styrene (St) as a monomer, sodium p-styrenesulfonate (NaSS) as an ionic comonomer, hexadecane (HD) as a hydrophobe, and 2,2'-azodiisobutyronitrile (AIBN) as an initiator in the presence of hydrophobic magnetite particles. The hydrophobic magnetite particles with an average size of about 10 nm were prepared by the acidification of the water-based magnetite ferrofluid, previously synthesized by a chemical coprecipitation method. Some colloidal features of the synthesized SS-MPCPs were analyzed. The morphology and the particle size distributions (PSDs) of the SS-MPCPs were observed and analyzed by transmission electron microscopy (TEM). The surface charge density was determined by conductometric titration. The surface hairy layer and the colloidal stability of SS-MPCPs against different electrolytes were determined by photon correlation spectroscopy (PCS). The average Fe3O4 content of SS-MPCPs was determined by thermogravimetric analysis (TGA). Vibrating sample magnetometry (VSM) was used to analyze the magnetic properties of the SS-MPCPs under dry conditions. The results show that the encapsulation of magnetite is successful and the distribution of magnetite particles inside SS-MPCPs is mainly in the core of the particles. The best SS-MPCPs prepared had a relatively narrow PSD, exhibited superparamagnetism, and possessed some magnetic response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA