RESUMO
Spectral karyotyping (SKY) and comparative genomic hybridization (CGH) were used to elucidate the divergent cytogenetic make-up of the prototypical bilineage lymphoblastic pre-B lymphoma, P388, and its progenitor macrophage-like tumor, P388D1. P388 was found to be diploid and genomically stable. P388D1 was triploid, highly unstable and characterized by numerous marker chromosomes (Chrs) and composite rearrangements. The karyotype of P388D1 was so complex that its clonal relatedness to P388 would have remained questionable without confirmation by molecular analysis of the clonotypic immunoglobulin heavy-chain and light-chain gene recombinations that coexisted in both tumors. The intrinsic instability of the P388D1 genome was indicated by the observation that only four out of 42 aberrations uncovered by SKY (in a total of 27 metaphases) occurred consistently (100% incidence), whereas 27 changes occurred non-randomly (27 to 96% incidence) and 11 alterations randomly (4 to 11% incidence). Persistent cytogenetic instability was also observed in P388 'macrophages' after phorbol ester- and ionomycin-induced conversion in vitro of P388 lymphoma cells. The 'cytogenetic noise' in these cells was manifested by a multiplicity of sporadic chromosomal aberrations; ie 25 distinct changes were identified by SKY in 40 metaphases. The results in P388D1 and P388 'macrophages' were interpreted to indicate that the myeloid differentiation program in the bipotential pre-B cell lymphoma P388 is invariably characterized by karyotypic instability. The study presented here demonstrates the power of the combined SKY and CGH approach to resolve complicated karyotypes of important and widely used mouse tumors.