Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mycopathologia ; 188(1-2): 111-118, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36399230

RESUMO

Until recently, little was known about the susceptibility pattern of Cyberlindnera fabianii (Cy. fabianii) planktonic cells and biofilms regarding the most frequently administered systemic antifungals, despite the high mortality rate and its potential role in catheter-related infections. In the current study, the activity of fluconazole, amphotericin B and echinocandins (anidulafungin, caspofungin and micafungin) was determined against planktonic and sessile cells of Cy. fabianii clinical isolates (n = 8). Planktonic minimum inhibitory concentrations (MICs) ranged from 1 to 2, from 0.25 to 1, from 0.015 to 0.06, from 0.03 to 0.12 and from 0.25 to 0.5 mg/l for fluconazole, amphotericin B, anidulafungin, caspofungin and micafungin, respectively. One-day-old biofilms were highly resistant to fluconazole (MIC ranged from 512 to > 512) compared to planktonic counterparts, but not to amphotericin B (MIC ranged from 0.25 to 2 mg/l) and echinocandins (MIC ranged from 0.06 to 2 mg/l). Based on the calculated planktonic killing rates, the highest activity was observed in the case of anidulafungin (k values ranged from 0.37 to 2.09), while micafungin, caspofungin, amphotericin B and fluconazole exerted 0.46-1.47, 0.14-0.86, -0.03 to 2.08 and -0.15 to 0.09 killing rate value ranges, respectively. The obtained in vitro planktonic and sessile susceptibility patterns suggest that echinocandins and amphotericin B may be the most reliable treatment option for the treatment of Cy. fabianii infections.


Assuntos
Anfotericina B , Equinocandinas , Equinocandinas/farmacologia , Anfotericina B/farmacologia , Fluconazol/farmacologia , Anidulafungina/farmacologia , Caspofungina , Micafungina , Biofilmes
2.
Med Mycol ; 59(10): 1015-1023, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34021571

RESUMO

The in vitro and in vivo efficacy of caspofungin was determined in combination with isavuconazole against Candida auris. Drug-drug interactions were assessed utilizing the fractional inhibitory concentration indices (FICIs), the Bliss independence model and an immunocompromised mouse model. Median planktonic minimum inhibitory concentrations (pMICs) of 23 C. auris isolates were between 0.5 and 2 mg/l and between 0.015 and 4 mg/l for caspofungin and isavuconazole, respectively. Median pMICs for caspofungin and isavuconazole in combination showed 2-128-fold and 2-256-fold decreases, respectively. Caspofungin and isavuconazole showed synergism in 14 out of 23 planktonic isolates (FICI range 0.03-0.5; Bliss cumulative synergy volume range 0-4.83). Median sessile MICs (sMIC) of 14 biofilm-forming isolates were between 32 and >32 mg/l and between 0.5 and >2 mg/l for caspofungin and isavuconazole, respectively. Median sMICs for caspofungin and isavuconazole in combination showed 0-128-fold and 0-512-fold decreases, respectively. Caspofungin and isavuconazole showed synergistic interaction in 12 out of 14 sessile isolates (FICI range 0.023-0.5; Bliss cumulative synergy volume range 0.13-234.32). In line with the in vitro findings, synergistic interactions were confirmed by in vivo experiments. The fungal kidney burden decreases were more than three log volumes in mice treated with combination of 1 mg/kg caspofungin and 20 mg/kg isavuconazole daily; this difference was statistically significant compared with control mice (P < 0.001). Despite the favorable effect of isavuconazole in combination with caspofungin, further studies are needed to confirm the therapeutic advantage of this combination when treating an infection caused by C. auris.


Candida auris poses a continuous therapeutic challenge. We demonstrate an approach where the combination of caspofungin and isavuconazole showed a potent activity against planktonic cells and biofilms. This synergism helps to expand the therapeutic options against C. auris.


Assuntos
Candida auris , Candida , Animais , Antifúngicos/farmacologia , Biofilmes , Caspofungina , Camundongos , Testes de Sensibilidade Microbiana/veterinária , Nitrilas , Plâncton , Piridinas , Triazóis
3.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466640

RESUMO

Candida auris is a potential multidrug-resistant pathogen able to persist on indwelling devices as a biofilm, which serve as a source of catheter-associated infections. Neosartorya fischeri antifungal protein 2 (NFAP2) is a cysteine-rich, cationic protein with potent anti-Candida activity. We studied the in vitro activity of NFAP2 alone and in combination with fluconazole, amphotericin B, anidulafungin, caspofungin, and micafungin against C. auris biofilms. The nature of interactions was assessed utilizing the fractional inhibitory concentration index (FICI), a Bliss independence model, and LIVE/DEAD viability assay. NFAP2 exerted synergy with all tested antifungals with FICIs ranging between 0.312-0.5, 0.155-0.5, 0.037-0.375, 0.064-0.375, and 0.064-0.375 for fluconazole, amphotericin B, anidulafungin, caspofungin, and micafungin, respectively. These results were confirmed using a Bliss model, where NFAP2 produced 17.54 µM2%, 2.16 µM2%, 33.31 µM2%, 10.72 µM2%, and 111.19 µM2% cumulative synergy log volume in combination with fluconazole, amphotericin B, anidulafungin, caspofungin, and micafungin, respectively. In addition, biofilms exposed to echinocandins (32 mg/L) showed significant cell death in the presence of NFAP2 (128 mg/L). Our study shows that NFAP2 displays strong potential as a novel antifungal compound in alternative therapies to combat C. auris biofilms.


Assuntos
Antifúngicos/metabolismo , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Neosartorya/metabolismo , Antifúngicos/farmacologia , Candida/fisiologia , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Sinergismo Farmacológico , Proteínas Fúngicas/farmacologia , Humanos
4.
Mycoses ; 63(4): 352-360, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31943428

RESUMO

BACKGROUND: Candidaemia is a common life-threatening disease among hospitalised patients, but the effect of the Candida biofilm-forming ability on the clinical outcome remains controversial. OBJECTIVE: The aim was to determine the impact of biofilms, specifically focusing on biofilm mass and metabolic activity, on the mortality in candidaemia. PATIENTS/METHODS: The clinical data of patients (n = 127) treated at the University of Debrecen, Clinical Centre, between January 2013 and December 2018, were investigated retrospectively. Biofilm formation was assessed using the crystal violet and XTT assays, measuring the biofilm mass and metabolic activity, respectively. Isolates were classified as low, intermediate and high biofilm producers both regarding biofilm mass and metabolic activity. The susceptibility of one-day-old biofilms to fluconazole, amphotericin B, anidulafungin, caspofungin and micafungin was evaluated and compared to planktonic susceptibility. RESULTS: Intermediate/high biofilm mass was associated with significantly higher mortality (61%). All Candida tropicalis, Candida parapsilosis and Candida glabrata isolates originating from fatal infections were intermediate/high biofilm producers, whereas this ratio was 85% for Candida albicans. Solid malignancy was associated with intermediate/high biofilm producers (P = .043). The mortality was significantly higher in infections caused by Candida strains producing biofilms with intermediate/high metabolic activity (62% vs. 33%, P = .010). The ratio of concomitant bacteraemia was higher for isolates forming biofilms with low metabolic activity (53% vs 28%, P = .015). CONCLUSIONS: This study provides evidence that the Candida biofilms especially with intermediate/high metabolic activity are related to higher mortality in candidaemia.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida , Candidemia/sangue , Mortalidade , Candida/isolamento & purificação , Candida/metabolismo , Candida albicans/isolamento & purificação , Candida albicans/metabolismo , Candida glabrata/isolamento & purificação , Candida glabrata/metabolismo , Candida parapsilosis/isolamento & purificação , Candida parapsilosis/metabolismo , Candida tropicalis/isolamento & purificação , Candida tropicalis/metabolismo , Feminino , Humanos , Masculino , Estudos Retrospectivos
5.
J Antimicrob Chemother ; 74(12): 3505-3510, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31539426

RESUMO

BACKGROUND: Rezafungin is a novel echinocandin with excellent activity against common Candida species; however, limited data are available regarding rare Candida species. METHODS: We determined the in vitro susceptibility of 689 clinical isolates of 5 common and 19 rare Candida species, as well as Saccharomyces cerevisiae. The activity of rezafungin was compared with that of anidulafungin, caspofungin, micafungin, amphotericin B and fluconazole, using CLSI broth microdilution methodology (Fourth Edition: M27). RESULTS: Rezafungin MIC90 values were 0.06 mg/L for Candida albicans (n=125), Candida tropicalis (n=51), Candida dubliniensis (n=22), Candida inconspicua (n=41), Candida sojae (n=10), Candida lipolytica (n=10) and Candida pulcherrima (n=10), 0.12 mg/L for Candida glabrata (n=81), Candida krusei (n=53), Candida kefyr (n=52) and Candida fabianii (n=15), 0.25 mg/L for Candida lusitaniae (n=46) and Candida auris (n=19), 0.5 mg/L for Candida metapsilosis (n=15) and S. cerevisiae (n=21), 1 mg/L for Candida orthopsilosis (n=15) and Candida guilliermondii (n=27) and 2 mg/L for Candida parapsilosis sensu stricto (n=59). Caspofungin MIC90 values were 0.25-2 mg/L for all species, while micafungin and anidulafungin MIC90 values were similar to those of rezafungin. Fluconazole resistance was found in C. albicans (5.6%) and C. glabrata (4.9%); rezafungin was effective against these isolates as well. Amphotericin B MIC values did not exceed 2 mg/L. CONCLUSIONS: Rezafungin showed excellent in vitro activity against both WT and azole-resistant Candida species, as well as against S. cerevisiae. Rezafungin had similar activity to other echinocandins (excluding caspofungin) against common Candida species and, notably, against clinically relevant uncommon Candida species.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Equinocandinas/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Candida/classificação , Candida glabrata/efeitos dos fármacos , Candida parapsilosis/efeitos dos fármacos , Candida tropicalis/efeitos dos fármacos , Testes de Sensibilidade Microbiana
6.
Pharmaceutics ; 15(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37242607

RESUMO

Candida auris is a multidrug-resistant pathogen against which echinocandins are the drug of choice. However, information on how the chitin synthase inhibitor nikkomycin Z influences the killing activities of echinocandins against C. auris is currently lacking. We determined the killing activities of anidulafungin and micafungin (0.25, 1, 8, 16 and 32 mg/L each) with and without nikkomycin Z (8 mg/L) against 15 isolates representing four C. auris clades (South Asian n = 5; East Asian n = 3; South African n = 3; South American n = 4, two of which were of environmental origin). Two and one isolates from the South Asian clade harbored mutations in the hot-spot 1 (S639Y and S639P) and 2 (R1354H) regions of the FKS1 gene, respectively. The anidulafungin, micafungin and nikkomycin Z MIC ranges were 0.015-4, 0.03-4 and 2->16 mg/L, respectively. Anidulafungin and micafungin alone exerted weak fungistatic activity against wild-type isolates and the isolate with a mutation in the hot-spot 2 region of FKS1 but was ineffective against the isolates with a mutation in the hot-spot 1 region. The nikkomycin Z killing curves were always similar to their respective controls. Twenty-two of sixty (36.7%) anidulafungin plus nikkomycin Z and twenty-four of sixty (40%) micafungin plus nikkomycin Z combinations produced at least 100-fold decreases in the CFUs (synergy), with a 41.7% and 20% fungicidal effect, respectively, against wild-type isolates. Antagonism was never observed. Similar results were found with the isolate with a mutation in hot-spot 2 of FKS1, but the combinations were ineffective against the two isolates with prominent mutations in hot-spot 1 of FKS1. The simultaneous inhibition of ß-1,3 glucan and chitin synthases in wild-type C. auris isolates produced significantly greater killing rates than either drug alone. Further studies are warranted to verify the clinical efficacy of echinocandin plus nikkomycin Z combinations against echinocandin susceptible C. auris isolates.

7.
AMB Express ; 13(1): 81, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532970

RESUMO

Tyrosol, a secondary metabolite of Candida species, regulates fungal morphogenesis, and its application may represent a novel innovative therapy against emerging multi-resistant fungal superbug such as Candida auris. In the current study, the effects of tyrosol on growth, redox homeostasis, intracellular microelement contents and activities of virulence-related enzymes released by C. auris were examined. To gain further information about the effect of tyrosol exposure, we revealed gene transcriptional changes using total transcriptome sequencing (RNA-Seq). At a concentration of 15 mM, tyrosol significantly decrease the growth of fungal cells within 2 h of its addition (5.6 × 107±1.2 × 107 and 2.5 × 107±0.6 × 107 colony forming unit/mL for control and tyrosol-treated cells, respectively). Furthermore, it enhanced the release of reactive oxygen species as confirmed by a dichlorofluorescein (DCF) assay (7.3 ± 1.8 [nmol DCF (OD640)-1] versus 16.8 ± 3.9 [nmol DCF (OD640)-1]), which was coincided with elevated superoxide dismutase, catalase and glutathione peroxidase activities. Tyrosol exerted in a 37%, 25%, 34% and 55% decrease in intracellular manganese, iron, zinc and copper contents, respectively, compared to control cells. The tyrosol treatment led to a 142 and 108 differentially transcripted genes with at least a 1.5-fold increase or decrease in transcription, respectively. Genes related to iron and fatty acid metabolism as well as nucleic acid synthesis were down-regulated, whereas those related to the antioxidative defence, adhesion and oxoacid metabolic processes were up-regulated. This study shows that tyrosol significantly influences growth, intracellular physiological processes and gene transcription in C. auris, which could highly support the development of novel treatment approaches against this important pathogen.

8.
J Fungi (Basel) ; 8(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628754

RESUMO

Candida auris is a multidrug-resistant fungus against which in some clinical situations amphotericin B (AMB) remains the alternative or first line drug. We compared daily 1 mg/kg of AMB efficacy in a neutropenic murine bloodstream infection model against 10 isolates representing four C. auris clades (South Asian n = 2; East Asian n = 2; South African n = 2; South American n = 4; two of which were of environmental origin). Five days of AMB treatment significantly increased the survival rates in mice infected with isolates of the East Asian clade, and 1 isolate each from the South African and South American clades (originated from bloodstream), but not in mice infected with the South Asian and 2 environmental isolates from the South American clades. AMB treatment decreased the fungal burden in mice infected with the 2 isolates each from East Asian and South African, and 1 out of 2 bloodstream isolates from South American clades in the hearts (p < 0.01), kidneys (p < 0.01) and brain (p < 0.05). AMB treatment, regardless of clades, significantly decreased colony forming units in the urine at day 3. However, histopathological examination in AMB-treated mice revealed large aggregates of yeast cells in the kidneys and hearts, and focal lesions in the cerebra and cerebelli, regardless of precise C. auris clade. Our clade-specific data confirm that the efficacy of AMB against C. auris is weak, explaining the therapeutic failures in clinical situations. Our results draw attention to the necessity to maximize the killing at the start of treatment to avoid later complications in the heart and central nervous system.

9.
Pathogens ; 10(8)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34451454

RESUMO

Candida auris is an emerging multiresistant yeast against which amphotericin B (AMB) is still the first therapeutic choice in certain clinical situations (i.e., meningitis, endophthalmitis, and urinary tract infections). As data about the in vitro killing activity of AMB against C. auris clades are lacking, we determined MICs, minimum fungicidal concentrations (MFCs), and killing activity of AMB against 22 isolates representing the 4 major C. auris clades (South Asian n = 6; East Asian n = 4; South African n = 6, and South American n = 6). MIC values were ≤1 mg/L regardless of clades; MFC ranges were, 1-4 mg/L, 2-4 mg/L, 2 mg/L, and 2-8 mg/L for South Asian, East Asian, South African, and South American clades, respectively. AMB showed concentration-, clade-, and isolate-dependent killing activity. AMB was fungicidal at 1 mg/L against two of six, two of four, three of six, and one of six isolates from the South Asian, East Asian, South African, and South American clades, respectively. Widefield fluorescence microscopy showed cell number decreases at 1 mg/L AMB in cases of the South Asian, East Asian, and South African clades. These data draw attention to the weak killing activity of AMB against C. auris regardless of clades, even when MICs are low (≤1 mg/L). Thus, AMB efficacy is unpredictable in treatment of invasive C. auris infections.

10.
Microorganisms ; 9(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923783

RESUMO

Candida auris is an emerging and frequently multidrug-resistant pathogen against which the echinocandins are the preferred therapeutic option. We compared killing activities of anidulafungin, caspofungin, micafungin, and rezafungin against 13 isolates representing four C. auris clades (South Asian n = 3; East Asian n = 3; South African n = 3; South American n = 4, of which two were of environmental origin). Minimum inhibitory concentration MICs and killing kinetics in RPMI-1640 and RPMI-1640 plus 50% serum (50% serum) were determined. The four echinocandins were never fungicidal and induced large aggregates in RPMI-1640 and, less markedly, in 50% serum. Colony forming unit CFU decreases were found more consistently in 50% serum than in RPMI-1640. Isolates from the East Asian clade were killed at ≥1-≥ 4 mg/L with all echinocandins regardless of media. Anidulafungin and micafungin produced killing at peak drug serum concentration (8 mg/L) against environmental but not clinical isolates from the South American and the South African clades. Micafungin at ≥8 mg/L but not anidulafungin produced CFU decreases against the South Asian clade as well. In 50% serum, rezafungin at ≥1-≥ 8 mg/L produced killing against all four clades. The next generation echinocandin, rezafungin, showed the same or better activity at clinically attainable trough concentration regardless of media, compared with anidulafungin, caspofungin, and micafungin against all four tested C. auris clades.

11.
Emerg Microbes Infect ; 9(1): 1160-1169, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32486923

RESUMO

Candida auris is an emerging worldwide concern, but comparative data about the virulence of different C. auris lineages in mammalian hosts is lacking. Different isolates of the four prevalent C. auris clades (South Asian n = 5, East Asian n = 4, South African n = 5, and South American n = 5) were compared to assess their virulence in a neutropenic murine bloodstream infection model with C. albicans as reference. C. auris, regardless of clade, proved to be less virulent than C. albicans. Highest overall mortality at day 21 was observed for the South American clade (96%), followed by the South Asian (80%), South African (45%) and East Asian (44%) clades. Fungal burden results showed close correlation with lethality. Histopathological examination revealed large aggregates of blastoconidia and budding yeast cells in the hearts, kidneys and livers but not in the spleens. The myocardium of apparently healthy sacrificed mice as well as of mice found moribund showed contraction band necrosis in case of all lineages. Regardless of clade, the heart and kidneys were the most heavily affected organs. Isolates of the same clade showed differences in virulence in mice, but a markedly higher virulence of the South American clade was clearly demonstrated.


Assuntos
Candida/patogenicidade , Candidemia/microbiologia , Neutropenia/microbiologia , Animais , Antifúngicos , Carga Bacteriana , Candida/classificação , Candida albicans/patogenicidade , Modelos Animais de Doenças , Coração/microbiologia , Rim/microbiologia , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Necrose/microbiologia , Virulência
12.
Front Microbiol ; 11: 957, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508780

RESUMO

The spreading of multidrug-resistant Candida auris is considered as an emerging global health threat. The number of effective therapeutic regimens is strongly limited; therefore, development of novel strategies is needed. Farnesol is a quorum-sensing molecule with a potential antifungal and/or adjuvant effect; it may be a promising candidate in alternative treatment against Candida species including C. auris. To examine the effect of farnesol on C. auris, we performed experiments focusing on growth, biofilm production ability, production of enzymes related to oxidative stress, triazole susceptibility and virulence. Concentrations ranging from 100 to 300 µM farnesol caused a significant growth inhibition against C. auris planktonic cells for 24 h (p < 0.01-0.05). Farnesol treatment showed a concentration dependent inhibition in terms of biofilm forming ability of C. auris; however, it did not inhibit significantly the biofilm development at 24 h. Nevertheless, the metabolic activity of adhered farnesol pre-exposed cells (75 µM) was significantly diminished at 24 h depending on farnesol treatment during biofilm formation (p < 0.001-0.05). Moreover, 300 µM farnesol exerted a marked decrease in metabolic activity against one-day-old biofilms between 2 and 24 h (p < 0.001). Farnesol increased the production of reactive species remarkably, as revealed by 2',7'-dichlorofluorescein (DCF) assay {3.96 ± 0.89 [nmol DCF (OD640)-1] and 23.54 ± 4.51 [nmol DCF (OD640)-1] for untreated cells and farnesol exposed cells, respectively; p < 0.001}. This was in line with increased superoxide dismutase level {85.69 ± 5.42 [munit (mg protein)-1] and 170.11 ± 17.37 [munit (mg protein)-1] for untreated cells and farnesol exposed cells, respectively; p < 0.001}, but the catalase level remained statistically comparable between treated and untreated cells (p > 0.05). Concerning virulence-related enzymes, exposure to 75 µM farnesol did not influence phospholipase or aspartic proteinase activity (p > 0.05). The interaction between fluconazole, itraconazole, voriconazole, posaconazole, isavuconazole and farnesol showed clear synergism (FICI ranges from 0.038 to 0.375) against one-day-old biofilms. Regarding in vivo experiments, daily 75 µM farnesol treatment decreased the fungal burden in an immunocompromised murine model of disseminated candidiasis, especially in case of inocula pre-exposed to farnesol (p < 0.01). In summary, farnesol shows a promising therapeutic or adjuvant potential in traditional or alternative therapies such as catheter lock therapy.

13.
J Fungi (Basel) ; 6(3)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824464

RESUMO

Rezafungin is a next-generation echinocandin that has favorable pharmacokinetic properties. We compared the occurrence of paradoxical growth (PG) and trailing effect (TE) characteristics to echinocadins with rezafungin, caspofungin, micafungin and anidulafungin using 365 clinical Candida isolates belonging to 13 species. MICs were determined by BMD method according to CLSI (M27 Ed4). Disconnected growth (PG plus TE) was most frequent with caspofungin (49.6%), followed by anidulafungin (33.7%), micafungin (25.7%), while it was least frequent with rezafungin (16.9%). PG was relatively common in the case of caspofungin (30.1%) but was rare in the case of rezafungin (3.0%). C. tropicalis, C. albicans, C. orthopsilosis and C. inconspicua exhibited PG most frequently with caspofungin, micafungin or anidulafungin. PG never occurred in the case of C. krusei isolates. Against C. tropicalis and C. albicans, echinocandins frequently showed PG after 24 h followed by TE after 48 h. All four echinocandins exhibited TE for the majority of C. auris and C. dubliniensis isolates. Disconnected growth was common among Candida species and was echinocandin- and species-dependent. In contrast to earlier echinocandins, PG was infrequently found with rezafungin.

14.
Infect Drug Resist ; 12: 1805-1814, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31303773

RESUMO

BACKGROUND: Echinocandins are the first-line therapy for treatment of invasive Candida infections, but the mortality rate remains high, calling for novel strategies. Giving single larger echinocandin doses infrequently is an alternative regimen. Our aim was to test this novel approach in a neutropenic murine model. MATERIALS AND METHODS: We compared the in vivo efficacy of single 10 and 40 mg/kg of caspofungin (2.5× and 10× the normal humanized dose) to that of the same cumulative doses of daily 2 and 8 mg/kg doses for 5 days against 2 each of wild-type C. albicans and C. dubliniensis as well as echinocandin resistant C. albicans. As a comparator, we tested daily 1 mg/kg amphotericin B. RESULTS: In lethality experiments, all caspofungin and amphotericin B regimens improved survival against wild-type C. albicans and C. dubliniensis clinical isolates (P<0.0001) and decreased the mean fungal kidney burdens of both species compared to controls. However, fungal kidney burden decreases were not always statistically significant, especially with single 10 or 40 mg/kg caspofungin doses. Amphotericin B was the least active drug against wild-type C. albicans. Against echinocandin-resistant strains, monodose 40 mg/kg caspofungin and 1 mg/kg of daily amphotericin B were effective in lethality experiments. Although, significant kidney CFU decreases were never found, except for amphotericin B against one of the isolates (p<0.05 at day 3 and p<0.001 at day 6). CONCLUSION: Single 40 mg/kg caspofungin and 1 mg/kg amphotericin B proved to be effective in the lethality experiments against wild-type and echinocandin-resistant C. albicans and wild-type C. dubliniensis. This was not always shown regarding fungal tissue burdens. Single caspofungin doses used in mice in this study are attainable in humans as well, suggesting a potential place of this dosing strategy not only in prevention but also in curative treatment of evolved invasive Candida infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA