Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell ; 184(12): 3333-3348.e19, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34010619

RESUMO

Plant species have evolved myriads of solutions, including complex cell type development and regulation, to adapt to dynamic environments. To understand this cellular diversity, we profiled tomato root cell type translatomes. Using xylem differentiation in tomato, examples of functional innovation, repurposing, and conservation of transcription factors are described, relative to the model plant Arabidopsis. Repurposing and innovation of genes are further observed within an exodermis regulatory network and illustrate its function. Comparative translatome analyses of rice, tomato, and Arabidopsis cell populations suggest increased expression conservation of root meristems compared with other homologous populations. In addition, the functions of constitutively expressed genes are more conserved than those of cell type/tissue-enriched genes. These observations suggest that higher order properties of cell type and pan-cell type regulation are evolutionarily conserved between plants and animals.


Assuntos
Arabidopsis/genética , Genes de Plantas , Invenções , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Solanum lycopersicum/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Proteínas de Fluorescência Verde/metabolismo , Solanum lycopersicum/citologia , Meristema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas , Especificidade da Espécie , Fatores de Transcrição/metabolismo , Xilema/genética
3.
Int J Mol Sci ; 20(22)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726733

RESUMO

Several environmental factors, such as drought, salinity, and extreme temperatures, negatively affect plant growth and development, which leads to yield losses. The tolerance or sensitivity to abiotic stressors are the expression of a complex machinery involving molecular, biochemical, and physiological mechanisms. Here, a meta-analysis on previously published RNA-Seq data was performed to identify the genes conferring tolerance to chilling, osmotic, and salt stresses, by comparing the transcriptomic changes between tolerant and susceptible rice genotypes. Several genes encoding transcription factors (TFs) were identified, suggesting that abiotic stress tolerance involves upstream regulatory pathways. A gene co-expression network defined the metabolic and signalling pathways with a prominent role in the differentiation between tolerance and susceptibility: (i) the regulation of endogenous abscisic acid (ABA) levels, through the modulation of genes that are related to its biosynthesis/catabolism, (ii) the signalling pathways mediated by ABA and jasmonic acid, (iii) the activity of the "Drought and Salt Tolerance" TF, involved in the negative regulation of stomatal closure, and (iv) the regulation of flavonoid biosynthesis by specific MYB TFs. The identified genes represent putative key players for conferring tolerance to a broad range of abiotic stresses in rice; a fine-tuning of their expression seems to be crucial for rice plants to cope with environmental cues.


Assuntos
Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oryza , Osmorregulação , Proteínas de Plantas , Tolerância ao Sal/genética , Fatores de Transcrição , Desidratação/genética , Desidratação/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
4.
Bioinformatics ; 33(3): 453-455, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158604

RESUMO

SUMMARY: Pathway Inspector is an easy-to-use web application helping researchers to find patterns of expression in complex RNAseq experiments. The tool combines two standard approaches for RNAseq analysis: the identification of differentially expressed genes and a topology-based analysis of enriched pathways. Pathway Inspector is equipped with ad hoc interactive graphical interfaces simplifying the discovery of modulated pathways and the integration of the differentially expressed genes in the corresponding pathway topology. AVAILABILITY AND IMPLEMENTATION: Pathway Inspector is available at the website http://admiral.fmach.it/PI and has been developed in Python, making use of the Django Web Framework. CONTACT: Contact:paolo.fontana@fmach.it


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Software , Biologia Computacional/métodos
5.
Plant Physiol ; 173(2): 1355-1370, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28031475

RESUMO

Over the recent years, several proteins that make up the mitochondrial calcium uniporter complex (MCUC) mediating Ca2+uptake into the mitochondrial matrix have been identified in mammals, including the channel-forming protein MCU. Although six MCU gene homologs are conserved in the model plant Arabidopsis (Arabidopsis thaliana) in which mitochondria can accumulate Ca2+, a functional characterization of plant MCU homologs has been lacking. Using electrophysiology, we show that one isoform, AtMCU1, gives rise to a Ca2+-permeable channel activity that can be observed even in the absence of accessory proteins implicated in the formation of the active mammalian channel. Furthermore, we provide direct evidence that AtMCU1 activity is sensitive to the mitochondrial calcium uniporter inhibitors Ruthenium Red and Gd3+, as well as to the Arabidopsis protein MICU, a regulatory MCUC component. AtMCU1 is prevalently expressed in roots, localizes to mitochondria, and its absence causes mild changes in Ca2+ dynamics as assessed by in vivo measurements in Arabidopsis root tips. Plants either lacking or overexpressing AtMCU1 display root mitochondria with altered ultrastructure and show shorter primary roots under restrictive growth conditions. In summary, our work adds evolutionary depth to the investigation of mitochondrial Ca2+ transport, indicates that AtMCU1, together with MICU as a regulator, represents a functional configuration of the plant mitochondrial Ca2+ uptake complex with differences to the mammalian MCUC, and identifies a new player of the intracellular Ca2+ regulation network in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Canais de Cálcio/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Canais de Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Mutação , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
6.
Plant Physiol ; 167(1): 216-27, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25367859

RESUMO

Since the discovery of 20 genes encoding for putative ionotropic glutamate receptors in the Arabidopsis (Arabidopsis thaliana) genome, there has been considerable interest in uncovering their physiological functions. For many of these receptors, neither their channel formation and/or physiological roles nor their localization within the plant cells is known. Here, we provide, to our knowledge, new information about in vivo protein localization and give insight into the biological roles of the so-far uncharacterized Arabidopsis GLUTAMATE RECEPTOR3.5 (AtGLR3.5), a member of subfamily 3 of plant glutamate receptors. Using the pGREAT vector designed for the expression of fusion proteins in plants, we show that a splicing variant of AtGLR3.5 targets the inner mitochondrial membrane, while the other variant localizes to chloroplasts. Mitochondria of knockout or silenced plants showed a strikingly altered ultrastructure, lack of cristae, and swelling. Furthermore, using a genetically encoded mitochondria-targeted calcium probe, we measured a slightly reduced mitochondrial calcium uptake capacity in the knockout mutant. These observations indicate a functional expression of AtGLR3.5 in this organelle. Furthermore, AtGLR3.5-less mutant plants undergo anticipated senescence. Our data thus represent, to our knowledge, the first evidence of splicing-regulated organellar targeting of a plant ion channel and identify the first cation channel in plant mitochondria from a molecular point of view.


Assuntos
Processamento Alternativo/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Mitocôndrias/fisiologia , Receptores de Glutamato/genética , Processamento Alternativo/fisiologia , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Senescência Celular/genética , Senescência Celular/fisiologia , Cloroplastos/genética , Cloroplastos/fisiologia , Cloroplastos/ultraestrutura , Técnicas de Inativação de Genes , Marcação de Genes , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/fisiologia , Membranas Mitocondriais/ultraestrutura , Receptores de Glutamato/fisiologia
7.
Plant Physiol ; 162(2): 953-64, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23640756

RESUMO

Despite the important achievement of the high-resolution structures of several prokaryotic channels, current understanding of their physiological roles in bacteria themselves is still far from complete. We have identified a putative two transmembrane domain-containing channel, SynCaK, in the genome of the freshwater cyanobacterium Synechocystis sp. PCC 6803, a model photosynthetic organism. SynCaK displays significant sequence homology to MthK, a calcium-dependent potassium channel isolated from Methanobacterium thermoautotrophicum. Expression of SynCaK in fusion with enhanced GFP in mammalian Chinese hamster ovary cells' plasma membrane gave rise to a calcium-activated, potassium-selective activity in patch clamp experiments. In cyanobacteria, Western blotting of isolated membrane fractions located SynCaK mainly to the plasma membrane. To understand its physiological function, a SynCaK-deficient mutant of Synechocystis sp. PCC 6803, ΔSynCaK, has been obtained. Although the potassium content in the mutant organisms was comparable to that observed in the wild type, ΔSynCaK was characterized by a depolarized resting membrane potential, as determined by a potential-sensitive fluorescent probe. Growth of the mutant under various conditions revealed that lack of SynCaK does not impair growth under osmotic or salt stress and that SynCaK is not involved in the regulation of photosynthesis. Instead, its lack conferred an increased resistance to the heavy metal zinc, an environmental pollutant. A similar result was obtained using barium, a general potassium channel inhibitor that also caused depolarization. Our findings thus indicate that SynCaK is a functional channel and identify the physiological consequences of its deletion in cyanobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Synechocystis/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Células CHO , Cálcio/metabolismo , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Regulação da Expressão Gênica , Potenciais da Membrana , Methanobacterium/genética , Dados de Sequência Molecular , Mutação , Pressão Osmótica , Técnicas de Patch-Clamp , Canais de Potássio Cálcio-Ativados/química , Canais de Potássio Cálcio-Ativados/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Synechocystis/efeitos dos fármacos , Synechocystis/genética , Synechocystis/metabolismo , Zinco/metabolismo , Zinco/farmacologia
9.
Front Plant Sci ; 14: 1228060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692417

RESUMO

Introduction: Chloroplast calcium homeostasis plays an important role in modulating the response of plants to abiotic and biotic stresses. One of the greatest challenges is to understand how chloroplast calcium-permeable pathways and sensors are regulated in a concerted manner to translate specific information into a calcium signature and to elucidate the downstream effects of specific chloroplast calcium dynamics. One of the six homologs of the mitochondrial calcium uniporter (MCU) was found to be located in chloroplasts in the leaves and to crucially contribute to drought- and oxidative stress-triggered uptake of calcium into this organelle. Methods: In the present study we integrated comparative proteomic analysis with biochemical, genetic, cellular, ionomic and hormone analysis in order to gain an insight into how chloroplast calcium channels are integrated into signaling circuits under watered condition and under drought stress. Results: Altogether, our results indicate for the first time a link between chloroplast calcium channels and hormone levels, showing an enhanced ABA level in the cmcu mutant already in well-watered condition. Furthermore, we show that the lack of cMCU results in an upregulation of the calcium sensor CAS and of enzymes of chlorophyll synthesis, which are also involved in retrograde signaling upon drought stress, in two independent KO lines generated in Col-0 and Col-4 ecotypes. Conclusions: These observations point to chloroplasts as important signaling hubs linked to their calcium dynamics. Our results obtained in the model plant Arabidopsis thaliana are discussed also in light of our limited knowledge regarding organellar calcium signaling in crops and raise the possibility of an involvement of such signaling in response to drought stress also in crops.

10.
Biochim Biophys Acta ; 1807(3): 359-67, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21110940

RESUMO

Bioinformatic approaches have allowed the identification in Arabidopsis thaliana of twenty genes encoding for homologues of animal ionotropic glutamate receptors (iGLRs). Some of these putative receptor proteins, grouped into three subfamilies, have been located to the plasmamembrane, but their possible location in organelles has not been investigated so far. In the present work we provide multiple evidence for the plastid localization of a glutamate receptor, AtGLR3.4, in Arabidopsis and tobacco. Biochemical analysis was performed using an antibody shown to specifically recognize both the native protein in Arabidopsis and the recombinant AtGLR3.4 fused to YFP expressed in tobacco. Western blots indicate the presence of AtGLR3.4 in both the plasmamembrane and in chloroplasts. In agreement, in transformed Arabidopsis cultured cells as well as in agroinfiltrated tobacco leaves, AtGLR3.4::YFP is detected both at the plasmamembrane and at the plastid level by confocal microscopy. The photosynthetic phenotype of mutant plants lacking AtGLR3.4 was also investigated. These results identify for the first time a dual localization of a glutamate receptor, revealing its presence in plastids and chloroplasts and opening the way to functional studies.


Assuntos
Arabidopsis/metabolismo , Membrana Celular/metabolismo , Nicotiana/metabolismo , Plastídeos/metabolismo , Receptores de Glutamato/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fotossíntese , Raízes de Plantas/metabolismo , Receptores de Glutamato/genética , Homologia de Sequência de Aminoácidos , Tilacoides/metabolismo
11.
Dev Cell ; 57(9): 1177-1192.e6, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35504287

RESUMO

Understanding how roots modulate development under varied irrigation or rainfall is crucial for development of climate-resilient crops. We established a toolbox of tagged rice lines to profile translating mRNAs and chromatin accessibility within specific cell populations. We used these to study roots in a range of environments: plates in the lab, controlled greenhouse stress and recovery conditions, and outdoors in a paddy. Integration of chromatin and mRNA data resolves regulatory networks of the following: cycle genes in proliferating cells that attenuate DNA synthesis under submergence; genes involved in auxin signaling, the circadian clock, and small RNA regulation in ground tissue; and suberin biosynthesis, iron transporters, and nitrogen assimilation in endodermal/exodermal cells modulated with water availability. By applying a systems approach, we identify known and candidate driver transcription factors of water-deficit responses and xylem development plasticity. Collectively, this resource will facilitate genetic improvements in root systems for optimal climate resilience.


Assuntos
Oryza , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Água/metabolismo
12.
Cell Physiol Biochem ; 26(2): 253-62, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20798509

RESUMO

Bioinformatic approaches have allowed the identification of twenty genes, grouped into three subfamilies, encoding for homologues of animal ionotropic glutamate receptors (iGLRs) in the Arabidopsis thaliana model plant. Indirect evidence suggests that plant iGLRs function as non-selective cation channels. In the present work we provide biochemical and electrophysiological evidences for the chloroplast localization of glutamate receptor(s) of family 3 (iGLR3) in spinach. A specific antibody, recognizing putative receptors of family 3 locates iGLR3 to the inner envelope membrane of chloroplasts. In planar lipid bilayer experiments, purified inner envelope vesicles from spinach display a cation-selective electrophysiological activity which is inhibited by DNQX (6,7-dinitroquinoxaline-2,3-dione), considered to act as an inhibitor on both animal and plant iGLRs. These results identify for the first time the intracellular localization of plant glutamate receptor(s) and a DNQX-sensitive, glutamate-gated activity at single channel level in native membrane with properties compatible with those predicted for plant glutamate receptors.


Assuntos
Proteínas de Plantas/análise , Receptores Ionotrópicos de Glutamato/análise , Sequência de Aminoácidos , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Bicamadas Lipídicas/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/metabolismo , Quinoxalinas/farmacologia , Receptores Ionotrópicos de Glutamato/antagonistas & inibidores , Receptores Ionotrópicos de Glutamato/metabolismo , Spinacia oleracea/metabolismo
13.
Cell Physiol Biochem ; 26(6): 975-82, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21220928

RESUMO

Indirect evidence points to the presence of K(+) channels in plant mitochondria. In the present study, we report the results of the first patch clamp experiments on plant mitochondria. Single-channel recordings in 150 mM potassium gluconate have allowed the biophysical characterization of a channel with a conductance of 150 pS in the inner mitochondrial membrane of mitoplasts obtained from wheat (Triticum durum Desf.). The channel displayed sharp voltage sensitivity, permeability to potassium and cation selectivity. ATP in the mM concentration range completely abolished the activity. We discuss the possible molecular identity of the channel and its possible role in the defence mechanisms against oxidative stress in plants.


Assuntos
Trifosfato de Adenosina/farmacologia , Mitocôndrias/metabolismo , Canais de Potássio/fisiologia , Triticum/metabolismo , Estresse Oxidativo , Técnicas de Patch-Clamp , Canais de Potássio/metabolismo
14.
Front Plant Sci ; 11: 186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226434

RESUMO

Calcium has long been known to regulate the metabolism of chloroplasts, concerning both light and carbon reactions of photosynthesis, as well as additional non photosynthesis-related processes. In addition to undergo Ca2+ regulation, chloroplasts can also influence the overall Ca2+ signaling pathways of the plant cell. Compelling evidence indicate that chloroplasts can generate specific stromal Ca2+ signals and contribute to the fine tuning of cytoplasmic Ca2+ signaling in response to different environmental stimuli. The recent set up of a toolkit of genetically encoded Ca2+ indicators, targeted to different chloroplast subcompartments (envelope, stroma, thylakoids) has helped to unravel the participation of chloroplasts in intracellular Ca2+ handling in resting conditions and during signal transduction. Intra-chloroplast Ca2+ signals have been demonstrated to occur in response to specific environmental stimuli, suggesting a role for these plant-unique organelles in transducing Ca2+-mediated stress signals. In this mini-review we present current knowledge of stimulus-specific intra-chloroplast Ca2+ transients, as well as recent advances in the identification and characterization of Ca2+-permeable channels/transporters localized at chloroplast membranes. In particular, the potential role played by cMCU, a chloroplast-localized member of the mitochondrial calcium uniporter (MCU) family, as component of plant environmental sensing is discussed in detail, taking into account some specific structural features of cMCU. In summary, the recent molecular identification of some players of chloroplast Ca2+ signaling has opened new avenues in this rapidly developing field and will hopefully allow a deeper understanding of the role of chloroplasts in shaping physiological responses in plants.

15.
New Phytol ; 181(3): 563-75, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19021865

RESUMO

Here, for the first time, a comprehensive transcriptomics study is presented of leaf senescence in the legume model Medicago truncatula, providing a broad overview of differentially expressed transcripts involved in this process. The cDNA-amplification fragment length polymorphism (AFLP) technique was used to identify > 500 genes, which were cloned and sorted into functional categories according to their gene ontology annotation. Comparison between the datasets of Arabidopsis and M. truncatula leaf senescence reveals common physiological events but differences in the nitrogen metabolism and in transcriptional regulation. In addition, it was observed that a minority of the genes regulated during leaf senescence were equally involved in other processes leading to programmed cell death, such as nodule senescence and nitric oxide signalling. This study provides a wide transcriptional profile for the comprehension of key events of leaf senescence in M. truncatula and highlights a possible regulative role for MADS box transcription factors in the terminal phases of the process.


Assuntos
Arabidopsis/genética , Senescência Celular/genética , Perfilação da Expressão Gênica , Medicago truncatula/genética , Óxido Nítrico/metabolismo , Folhas de Planta/genética , Nódulos Radiculares de Plantas/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Apoptose/efeitos dos fármacos , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Medicago truncatula/citologia , Medicago truncatula/efeitos dos fármacos , Modelos Genéticos , Dados de Sequência Molecular , Óxido Nítrico/farmacologia , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
16.
PLoS One ; 14(4): e0213986, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31039145

RESUMO

Among cereal crops, salinity tolerance is rare and complex. Multiple genes control numerous pathways, which constitute plant's response to salinity. Cell cultures act as model system and are useful to investigate the salinity response which can possibly mimic a plant's response to stress. In the present study two indica rice varieties, KS-282 and Super Basmati which exhibited contrasting sodium chloride (NaCl) stress response were used to establish cell cultures. The cell cultures showed a contrasting response to salt stress at 100 mM NaCl. High level of intracellular hydrogen peroxide (H2O2) and nitric oxide (NO) were observed in sensitive cell culture for prolonged period as compared to the tolerant cells in which an extracellular H2O2 burst along with controlled intracellular H2O2 and NO signal was seen. To evaluate the role of NO in inducing cell death under salt stress, cell death percentage (CDP) was measured after 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) pre-treatment. CDP was reduced significantly in both tolerant and sensitive cell cultures emphasizing NO's possible role in programmed cell death. Expression analysis of apoplastic NADPH oxidase, i.e. OsRbohA and recently characterised OSCA family members i.e. OsOSCA 1.2 and OsOSCA 3.1 was done. Intracellular H2O2/NO levels displayed an interplay between Ca2+ influx and ROS/RNS signal. Detoxifying enzyme (i.e. ascorbate peroxidase and catalase) activity was considerably higher in tolerant KS-282 while the activity of superoxide dismutase was significantly prominent in the sensitive cells triggering greater oxidative damage owing to the prolonged presence of intracellular H2O2. Salt stress and ROS responsive TFs i.e. OsSERF1 and OsDREB2A were expressed exclusively in the tolerant cells. Similarly, the expression of genes involved in maintaining high [K+]/[Na+] ratio was considerably higher and earlier in the tolerant variety. Overall, we suggest that a control over ROS production, and an increase in the expression of genes important for potassium homeostasis play a dynamic role in salinity tolerance in rice cell cultures.


Assuntos
Homeostase/fisiologia , Oryza/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Oryza/citologia , Proteínas de Plantas/metabolismo , Potássio/metabolismo , Sementes/citologia , Cloreto de Sódio/administração & dosagem , Cloreto de Sódio/metabolismo , Superóxido Dismutase/metabolismo
17.
Nat Plants ; 5(6): 581-588, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31182842

RESUMO

Chloroplasts are integral to sensing biotic and abiotic stress in plants, but their role in transducing Ca2+-mediated stress signals remains poorly understood1,2. Here we identify cMCU, a member of the mitochondrial calcium uniporter (MCU) family, as an ion channel mediating Ca2+ flux into chloroplasts in vivo. Using a toolkit of aequorin reporters targeted to chloroplast stroma and the cytosol in cMCU wild-type and knockout lines, we provide evidence that stress-stimulus-specific Ca2+ dynamics in the chloroplast stroma correlate with expression of the channel. Fast downstream signalling events triggered by osmotic stress, involving activation of the mitogen-activated protein kinases (MAPK) MAPK3 and MAPK6, and the transcription factors MYB60 and ethylene-response factor 6 (ERF6), are influenced by cMCU activity. Relative to wild-type plants, cMCU knockouts display increased resistance to long-term water deficit and improved recovery on rewatering. Modulation of stromal Ca2+ in specific processing of stress signals identifies cMCU as a component of plant environmental sensing.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canais de Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Proteínas Mitocondriais/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Canais de Cálcio/genética , Proteínas de Transporte de Cátions/genética , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Escherichia coli , Técnicas de Inativação de Genes , Sistema de Sinalização das MAP Quinases , Proteínas Mitocondriais/genética , Pressão Osmótica
19.
Plants (Basel) ; 7(3)2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30223560

RESUMO

Clear evidence has highlighted a role for hormones in the plant stress response, including salt stress. Interplay and cross-talk among different hormonal pathways are of vital importance in abiotic stress tolerance. A genome-wide transcriptional analysis was performed on leaves and roots of three-day salt treated and untreated plants of two Italian rice varieties, Baldo and Vialone Nano, which differ in salt sensitivity. Genes correlated with hormonal pathways were identified and analyzed. The contents of abscisic acid, indoleacetic acid, cytokinins, and gibberellins were measured in roots, stems, and leaves of seedlings exposed for one and three days to salt stress. From the transcriptomic analysis, a huge number of genes emerged as being involved in hormone regulation in response to salt stress. The expression profile of genes involved in biosynthesis, signaling, response, catabolism, and conjugation of phytohormones was analyzed and integrated with the measurements of hormones in roots, stems, and leaves of seedlings. Significant changes in the hormone levels, along with differences in morphological responses, emerged between the two varieties. These results support the faster regulation of hormones metabolism in the tolerant variety that allows a prompt growth reprogramming and the setting up of an acclimation program, leading to specific morpho-physiological responses and growth recovery.

20.
Front Plant Sci ; 9: 1549, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405678

RESUMO

Salt tolerance is a complex trait that varies between and within species. H2O2 profiles as well as antioxidative systems have been investigated in the cultured cells of rice obtained from Italian rice varieties with different salt tolerance. Salt stress highlighted differences in extracellular and intracellular H2O2 profiles in the two cell cultures. The tolerant variety had innate reactive oxygen species (ROS) scavenging systems that enabled ROS, in particular H2O2, to act as a signal molecule rather than a damaging one. Different intracellular H2O2 profiles were also observed: in tolerant cells, an early and narrow peak was detected at 5 min; while in sensitive cells, a large peak was associated with cell death. Likewise, the transcription factor salt-responsive ethylene responsive factor 1 (TF SERF1), which is known for being regulated by H2O2, showed a different expression profile in the two cell lines. Notably, similar H2O2 profiles and cell fates were also obtained when exogenous H2O2 was produced by glucose/glucose oxidase (GOX) treatment. Under salt stress, the tolerant variety also exhibited rapid upregulation of K+ transporter genes in order to deal with K+/Na+ impairment. This upregulation was not detected in the presence of oxidative stress alone. The importance of the innate antioxidative profile was confirmed by the protective effect of experimentally increased glutathione in salt-treated sensitive cells. Overall, these results underline the importance of specific H2O2 signatures and innate antioxidative systems in modulating ionic and redox homeostasis for salt stress tolerance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA