Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Crit Care Med ; 51(2): 291-300, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36524820

RESUMO

OBJECTIVES: Many machine learning (ML) models have been developed for application in the ICU, but few models have been subjected to external validation. The performance of these models in new settings therefore remains unknown. The objective of this study was to assess the performance of an existing decision support tool based on a ML model predicting readmission or death within 7 days after ICU discharge before, during, and after retraining and recalibration. DESIGN: A gradient boosted ML model was developed and validated on electronic health record data from 2004 to 2021. We performed an independent validation of this model on electronic health record data from 2011 to 2019 from a different tertiary care center. SETTING: Two ICUs in tertiary care centers in The Netherlands. PATIENTS: Adult patients who were admitted to the ICU and stayed for longer than 12 hours. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We assessed discrimination by area under the receiver operating characteristic curve (AUC) and calibration (slope and intercept). We retrained and recalibrated the original model and assessed performance via a temporal validation design. The final retrained model was cross-validated on all data from the new site. Readmission or death within 7 days after ICU discharge occurred in 577 of 10,052 ICU admissions (5.7%) at the new site. External validation revealed moderate discrimination with an AUC of 0.72 (95% CI 0.67-0.76). Retrained models showed improved discrimination with AUC 0.79 (95% CI 0.75-0.82) for the final validation model. Calibration was poor initially and good after recalibration via isotonic regression. CONCLUSIONS: In this era of expanding availability of ML models, external validation and retraining are key steps to consider before applying ML models to new settings. Clinicians and decision-makers should take this into account when considering applying new ML models to their local settings.


Assuntos
Alta do Paciente , Readmissão do Paciente , Adulto , Humanos , Unidades de Terapia Intensiva , Hospitalização , Aprendizado de Máquina
2.
Value Health ; 25(3): 359-367, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35227446

RESUMO

OBJECTIVES: The machine learning prediction model Pacmed Critical (PC), currently under development, may guide intensivists in their decision-making process on the most appropriate time to discharge a patient from the intensive care unit (ICU). Given the financial pressure on healthcare budgets, this study assessed whether PC has the potential to be cost-effective compared with standard care, without the use of PC, for Dutch patients in the ICU from a societal perspective. METHODS: A 1-year, 7-state Markov model reflecting the ICU care pathway and incorporating the PC decision tool was developed. A hypothetical cohort of 1000 adult Dutch patients admitted in the ICU was entered in the model. We used the literature, expert opinion, and data from Amsterdam University Medical Center for model parameters. The uncertainty surrounding the incremental cost-effectiveness ratio was assessed using deterministic and probabilistic sensitivity analyses and scenario analyses. RESULTS: PC was a cost-effective strategy with an incremental cost-effectiveness ratio of €18 507 per quality-adjusted life-year. PC remained cost-effective over standard care in multiple scenarios and sensitivity analyses. The likelihood that PC will be cost-effective was 71% at a willingness-to-pay threshold of €30 000 per quality-adjusted life-year. The key driver of the results was the parameter "reduction in ICU length of stay." CONCLUSIONS: We showed that PC has the potential to be cost-effective for Dutch ICUs in a time horizon of 1 year. This study is one of the first cost-effectiveness analyses of a machine learning device. Further research is needed to validate the effectiveness of PC, thereby focusing on the key parameter "reduction in ICU length of stay" and potential spill-over effects.


Assuntos
Unidades de Terapia Intensiva/organização & administração , Aprendizado de Máquina/economia , Alta do Paciente/estatística & dados numéricos , Análise Custo-Benefício , Tomada de Decisões , Humanos , Unidades de Terapia Intensiva/economia , Cadeias de Markov , Modelos Econômicos , Países Baixos , Readmissão do Paciente/economia , Anos de Vida Ajustados por Qualidade de Vida
3.
Crit Care ; 25(1): 304, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34425864

RESUMO

BACKGROUND: The Coronavirus disease 2019 (COVID-19) pandemic has underlined the urgent need for reliable, multicenter, and full-admission intensive care data to advance our understanding of the course of the disease and investigate potential treatment strategies. In this study, we present the Dutch Data Warehouse (DDW), the first multicenter electronic health record (EHR) database with full-admission data from critically ill COVID-19 patients. METHODS: A nation-wide data sharing collaboration was launched at the beginning of the pandemic in March 2020. All hospitals in the Netherlands were asked to participate and share pseudonymized EHR data from adult critically ill COVID-19 patients. Data included patient demographics, clinical observations, administered medication, laboratory determinations, and data from vital sign monitors and life support devices. Data sharing agreements were signed with participating hospitals before any data transfers took place. Data were extracted from the local EHRs with prespecified queries and combined into a staging dataset through an extract-transform-load (ETL) pipeline. In the consecutive processing pipeline, data were mapped to a common concept vocabulary and enriched with derived concepts. Data validation was a continuous process throughout the project. All participating hospitals have access to the DDW. Within legal and ethical boundaries, data are available to clinicians and researchers. RESULTS: Out of the 81 intensive care units in the Netherlands, 66 participated in the collaboration, 47 have signed the data sharing agreement, and 35 have shared their data. Data from 25 hospitals have passed through the ETL and processing pipeline. Currently, 3464 patients are included in the DDW, both from wave 1 and wave 2 in the Netherlands. More than 200 million clinical data points are available. Overall ICU mortality was 24.4%. Respiratory and hemodynamic parameters were most frequently measured throughout a patient's stay. For each patient, all administered medication and their daily fluid balance were available. Missing data are reported for each descriptive. CONCLUSIONS: In this study, we show that EHR data from critically ill COVID-19 patients may be lawfully collected and can be combined into a data warehouse. These initiatives are indispensable to advance medical data science in the field of intensive care medicine.


Assuntos
COVID-19/epidemiologia , Estado Terminal/epidemiologia , Data Warehousing/estatística & dados numéricos , Registros Eletrônicos de Saúde/estatística & dados numéricos , Hospitalização/estatística & dados numéricos , Unidades de Terapia Intensiva/estatística & dados numéricos , Cuidados Críticos , Humanos , Países Baixos
4.
Crit Care ; 25(1): 448, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34961537

RESUMO

INTRODUCTION: Determining the optimal timing for extubation can be challenging in the intensive care. In this study, we aim to identify predictors for extubation failure in critically ill patients with COVID-19. METHODS: We used highly granular data from 3464 adult critically ill COVID patients in the multicenter Dutch Data Warehouse, including demographics, clinical observations, medications, fluid balance, laboratory values, vital signs, and data from life support devices. All intubated patients with at least one extubation attempt were eligible for analysis. Transferred patients, patients admitted for less than 24 h, and patients still admitted at the time of data extraction were excluded. Potential predictors were selected by a team of intensive care physicians. The primary and secondary outcomes were extubation without reintubation or death within the next 7 days and within 48 h, respectively. We trained and validated multiple machine learning algorithms using fivefold nested cross-validation. Predictor importance was estimated using Shapley additive explanations, while cutoff values for the relative probability of failed extubation were estimated through partial dependence plots. RESULTS: A total of 883 patients were included in the model derivation. The reintubation rate was 13.4% within 48 h and 18.9% at day 7, with a mortality rate of 0.6% and 1.0% respectively. The grandient-boost model performed best (area under the curve of 0.70) and was used to calculate predictor importance. Ventilatory characteristics and settings were the most important predictors. More specifically, a controlled mode duration longer than 4 days, a last fraction of inspired oxygen higher than 35%, a mean tidal volume per kg ideal body weight above 8 ml/kg in the day before extubation, and a shorter duration in assisted mode (< 2 days) compared to their median values. Additionally, a higher C-reactive protein and leukocyte count, a lower thrombocyte count, a lower Glasgow coma scale and a lower body mass index compared to their medians were associated with extubation failure. CONCLUSION: The most important predictors for extubation failure in critically ill COVID-19 patients include ventilatory settings, inflammatory parameters, neurological status, and body mass index. These predictors should therefore be routinely captured in electronic health records.


Assuntos
Extubação , COVID-19 , Falha de Tratamento , Adulto , COVID-19/terapia , Estado Terminal , Humanos , Aprendizado de Máquina
5.
Crit Care Explor ; 3(9): e0529, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589713

RESUMO

Unexpected ICU readmission is associated with longer length of stay and increased mortality. To prevent ICU readmission and death after ICU discharge, our team of intensivists and data scientists aimed to use AmsterdamUMCdb to develop an explainable machine learning-based real-time bedside decision support tool. DERIVATION COHORT: Data from patients admitted to a mixed surgical-medical academic medical center ICU from 2004 to 2016. VALIDATION COHORT: Data from 2016 to 2019 from the same center. PREDICTION MODEL: Patient characteristics, clinical observations, physiologic measurements, laboratory studies, and treatment data were considered as model features. Different supervised learning algorithms were trained to predict ICU readmission and/or death, both within 7 days from ICU discharge, using 10-fold cross-validation. Feature importance was determined using SHapley Additive exPlanations, and readmission probability-time curves were constructed to identify subgroups. Explainability was established by presenting individualized risk trends and feature importance. RESULTS: Our final derivation dataset included 14,105 admissions. The combined readmission/mortality rate within 7 days of ICU discharge was 5.3%. Using Gradient Boosting, the model achieved an area under the receiver operating characteristic curve of 0.78 (95% CI, 0.75-0.81) and an area under the precision-recall curve of 0.19 on the validation cohort (n = 3,929). The most predictive features included common physiologic parameters but also less apparent variables like nutritional support. At a 6% risk threshold, the model showed a sensitivity (recall) of 0.72, specificity of 0.70, and a positive predictive value (precision) of 0.15. Impact analysis using probability-time curves and the 6% risk threshold identified specific patient groups at risk and the potential of a change in discharge management to reduce relative risk by 14%. CONCLUSIONS: We developed an explainable machine learning model that may aid in identifying patients at high risk for readmission and mortality after ICU discharge using the first freely available European critical care database, AmsterdamUMCdb. Impact analysis showed that a relative risk reduction of 14% could be achievable, which might have significant impact on patients and society. ICU data sharing facilitates collaboration between intensivists and data scientists to accelerate model development.

6.
Intensive Care Med Exp ; 9(1): 32, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34180025

RESUMO

BACKGROUND: The identification of risk factors for adverse outcomes and prolonged intensive care unit (ICU) stay in COVID-19 patients is essential for prognostication, determining treatment intensity, and resource allocation. Previous studies have determined risk factors on admission only, and included a limited number of predictors. Therefore, using data from the highly granular and multicenter Dutch Data Warehouse, we developed machine learning models to identify risk factors for ICU mortality, ventilator-free days and ICU-free days during the course of invasive mechanical ventilation (IMV) in COVID-19 patients. METHODS: The DDW is a growing electronic health record database of critically ill COVID-19 patients in the Netherlands. All adult ICU patients on IMV were eligible for inclusion. Transfers, patients admitted for less than 24 h, and patients still admitted at time of data extraction were excluded. Predictors were selected based on the literature, and included medication dosage and fluid balance. Multiple algorithms were trained and validated on up to three sets of observations per patient on day 1, 7, and 14 using fivefold nested cross-validation, keeping observations from an individual patient in the same split. RESULTS: A total of 1152 patients were included in the model. XGBoost models performed best for all outcomes and were used to calculate predictor importance. Using Shapley additive explanations (SHAP), age was the most important demographic risk factor for the outcomes upon start of IMV and throughout its course. The relative probability of death across age values is visualized in Partial Dependence Plots (PDPs), with an increase starting at 54 years. Besides age, acidaemia, low P/F-ratios and high driving pressures demonstrated a higher probability of death. The PDP for driving pressure showed a relative probability increase starting at 12 cmH2O. CONCLUSION: Age is the most important demographic risk factor of ICU mortality, ICU-free days and ventilator-free days throughout the course of invasive mechanical ventilation in critically ill COVID-19 patients. pH, P/F ratio, and driving pressure should be monitored closely over the course of mechanical ventilation as risk factors predictive of these outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA