RESUMO
Collective interactions are a novel type of chemical bond formed between metals and electron-rich substituents around an electron-poor central atom. So far only a limited number of candidates for having collective interactions are reported. In this work, we extend the newly introduced concept of collective bonding to a series of neutral boron complexes with the general formula M2BX3 (M=Li, Na, and K; X=F, Cl, and Br). Our state-of-the-art ab initio computations suggest that these complexes form trigonal bipyramidal structures with a D3h to C3v distortion along the C3 axis of symmetry. The BX3 unit in the complexes distorts from planar to pyramidal akin to a sp3 hybridized atom. Interestingly, the interaction of the metals with the pyramidal side of BX3, where the lone pair in a hypothetical [BX3]2- should be located, is weaker than the interactions of metals with the inverted side, i. e., the middle of three halogen atoms. The origin of this stronger interaction can be explained by the formation of collective interactions between metals and halogen atoms as we explored via energy decomposition within the context of the theory of interacting quantum atoms, IQA.
RESUMO
Tetraquinolines (TEQs) have been recently synthesized and proposed to be a new member of the porphyrinoid family with highly distorted, nonplanar, geometries. In this contribution by studying several molecules, closely related to TEQs, we have suggested that the origin of the nonplanarity of TEQs and their counterparts is a combination of steric strain and the propensity of the molecules to avoid antiaromaticity. The tendency of TEQs to coordinate with doubly charged metal ions can be interpreted in terms of their transition from potential antiaromaticity to nonaromaticity. Even metal-coordinated TEQs do not sustain diatropic ring currents. Although full planarization is not possible because of steric strain, doubly oxidized TEQs and their counterparts sustain moderate global diatropic ring currents and partially planarize. The nature of current density in the molecules is studied in the light of Steiner-Fowler selection rules.
RESUMO
Magnetically induced ring currents are a conventional tool for the characterization of aromaticity. Dia- and paratropic currents are thought to be associated with stabilization (aromaticity) and destabilization (antiaromaticity), respectively. In the present work, I have questioned the validity of the paratropic currents as a measure of antiaromaticity among monocyclic hydrocarbons. I have shown that while reduced/oxidized radical ions of hydrocarbons sustain strong paratropic currents, they often gain extra stabilization via cyclic conjugation compared to their acyclic counterparts.
RESUMO
Endohedral fullerenes with a dipolar molecule enclosed in the fullerene cage have great potential in molecular electronics, such as diodes, switches, or molecular memristors. Here, we study a series of model systems based on MX@D5h(1)-C70 (M = a metal or hydrogen, X = a halogen or a chalcogen) endohedral fullerenes to identify potential molecular memristors and to derive a general formula for rapid identification of potential memristors among analogous MX@Cn systems. To obtain sufficiently accurate results for switching barriers and encapsulation energies, we perform a benchmark of ten DFT functionals against ab initio SCS-MP2 and DLPNO-CCSD(T) methods at the complete basis set limit. The whole series is then investigated using the PBE0 functional which was found to be the most efficient vs. the ab initio methods. Nine of the 34 MX@C70 molecules studied are predicted to have suitable switching barriers to be considered as potential candidates for molecular switches and memristors. We have identified several structure-property relationships for the switching barrier and response of the systems to the electric field, in particular the dependence of the switching barrier on the available space for M-X switching and faster response of the system to the electric field with a larger dipole moment of MX and MX@C70.
RESUMO
Herein, we report the synthesis of highly reduced bipyridyl magnesium complexes and the first example of a stable organic magnesium electride supported by quantum mechanical computations and X-ray diffraction. These complexes serve as unconventional homogeneous reductants due to their high solubility, modular redox potentials, and formation of insoluble, non-coordinating byproducts. The applicability of these reductants is showcased by accessing low-valent (bipy)2Ni(0) species that are challenging to access otherwise.
RESUMO
Gold(II) complexes are rare, and their application to the catalysis of chemical transformations is underexplored. The reason is their easy oxidation or reduction to more stable gold(III) or gold(I) complexes, respectively. We explored the thermodynamics of the formation of [AuII (L)(X)]+ complexes (L=ligand, X=halogen) from the corresponding gold(III) precursors and investigated their stability and spectral properties in the IR and visible range in the gas phase. The results show that the best ancillary ligands L for stabilizing gaseous [AuII (L)(X)]+ complexes are bidentate and tridentate ligands with nitrogen donor atoms. The electronic structure and spectral properties of the investigated gold(II) complexes were correlated with quantum chemical calculations. The results show that the molecular and electronic structure of the gold(II) complexes as well as their spectroscopic properties are very similar to those of analogous stable copper(II) complexes.
Assuntos
Cobre , Ouro , Ligantes , Ouro/química , Cobre/química , Cristalografia por Raios X , Cátions , Modelos Teóricos , Nitrogênio , HalogêniosRESUMO
Owing to its simplicity, selectivity, high yield, and the absence of byproducts, the "click" azide-alkyne reaction is widely used in many areas. The reaction is usually catalyzed by copper(I), which selectively produces the 1,4-disubstituted 1,2,3-triazole regioisomer. Ruthenium-based catalysts were later developed to selectively produce the opposite regioselectivityâthe 1,5-disubstituted 1,2,3-triazole isomer. Ruthenium-based catalysis, however, remains only tested for click reactions in solution, and the suitability of ruthenium catalysts for surface-based click reactions remains unknown. Also unknown are the electrical properties of the 1,4- and 1,5-regioisomers, and to measure them, both isomers need to be assembled on the electrode surface. Here, we test whether ruthenium catalysts can be used to catalyze surface azide-alkyne reactions to produce 1,5-disubstituted 1,2,3-triazole, and compare their electrochemical properties, in terms of surface coverages and electron transfer kinetics, to those of the compound formed by copper catalysis, 1,4-disubstituted 1,2,3-triazole isomer. Results show that ruthenium(II) complexes catalyze the click reaction on surfaces yielding the 1,5-disubstituted isomer, but the rate of the reaction is remarkably slower than that of the copper-catalyzed reaction, and this is related to the size of the catalyst involved as an intermediate in the reaction. The electron transfer rate constant (ket) for the ruthenium-catalyzed reaction is 30% of that measured for the copper-catalyzed 1,4-isomer. The lower conductivity of the 1,5-isomer is confirmed by performing nonequilibrium Green's function computations on relevant model systems. These findings demonstrate the feasibility of ruthenium-based catalysis of surface click reactions and point toward an electrical method for detecting the isomers of click reactions.
RESUMO
Here, we provide evidence of the path-dependency of the energy components of the energy decomposition analysis scheme, EDA, by studying a set of thirty-one closed-shell model systems with the D2h symmetry point group. For each system, we computed EDA components from nine different pathways and numerically showed that the relative magnitudes of the components differ substantially from one path to the other. Not surprisingly, yet unfortunately, the most significant variations in the relative magnitudes of the EDA components appear in the case of species with bonds within the grey zone of covalency and ionicity. We further discussed that the role of anions and their effect on arbitrary Pauli repulsion energy components affects the nature of bonding defined by EDA. The outcome variation by the selected partitioning scheme of EDA might bring arbitrariness when a careful comparison is overlooked.
RESUMO
The nature of magnetically induced current densities (MICD) of metallabenzenes and related compounds has been examined with relativistic DFT calculations to assess the magnetic aromaticity of the molecules. The origin of the total MICD has been analyzed in terms of individual molecular orbital (MO) contributions. Our study reveals that the σ-framework of the molecules always makes a diamagnetic contribution to the MICD. On the other hand, π-MOs and Craig-Möbius type π-MOs, i.e., MOs in which the dxy/dxz orbitals of the metal centers change the phase of the wave function akin to a Möbius twist, may not make a diatropic contribution. We have identified metallabenzenes with multiple magnetic aromaticities. In the case of iridabenzenes, σ-MICD has been found to decrease dramatically from Ir(III) to Ir(V) systems. Furthermore, a brief examination of some recently synthesized metallapolycycles has shown that the metal center in a given ring can strongly modulate the aromaticity of neighboring rings. Finally, the finding that relatively minor perturbations in the ligand environment of the metal can substantially influence the aromaticity of metallabenzenes and related molecules underscores the protean character of metallaaromaticity and the need for even wider-ranging investigations. Considering the conflicts between magnetic response and ground-state aromaticity criteria (energetic, structural, and electronic criteria), we propose that the term aromatic be used for labeling a molecule if and only if all criteria confirm aromaticity. In other words, neither magnetic nor ground-state criteria are necessary and sufficient conditions for labeling a molecule aromatic.
RESUMO
The formation of purine and pyrimidine base pairs (BPs), which contributes to shaping of the canonical and noncanonical 3D structures of nucleic acids, is one the most investigated phenomena in chemistry and life sciences. In this contribution, the anatomy of the bond energy (BDE) of the base-pairing interaction in 39 different arrangements found experimentally or predicted for DNA structures containing the four common nucleobases (A, C, G, T) in their neutral or protonated forms is described in light of the theory of interacting quantum atoms within the context of the quantum theory of atoms in molecules. The interplay of individual energy components involved in the three stages of the bond formation process (structural deformation, electron-density promotion, and intermolecular interaction) is studied. We recognized that for the neutral BPs, variations in the kinetic and electrostatic contributions to the BDE are rather negligible, leaving the exchange-correlation energy as the main stabilizing component. It is shown that the contribution of the exchange-correlation term can be recovered by including atoms that are formally assumed to be hydrogen bonded (primary interaction). In contrast, to recover the electrostatic component of interaction, one must consider both the primary and secondary (formally nonbonded atoms) interatomic interactions. The results of our study were employed to design new types of BPs with altered bonding anatomy. We demonstrate that improving the electrostatic characteristics of the BPs does not necessarily result in greater interaction energies if weak secondary hydrogen bonding is destroyed. However, the main tuning factor for systems with conserved interacting faces (primary interactions) is the electrostatic component of the interaction energy resulting from the secondary atom-atom electrostatics.
Assuntos
DNA , Teoria Quântica , Pareamento de Bases , Ligação de Hidrogênio , Eletricidade EstáticaRESUMO
In this work bonding and aromaticity of triply bonded atoms of group 13 elements (M≡M, M = B and Al) in recently characterized B2Al3-, Na3Al2-, and Na4Al2 are studied. Here, I show that although molecular orbital-based analyses characterize triple bonds, the electropositive nature of group 13 elements gives these bonds unique characteristics. The bond orders derived from the delocalization index, topology of the electron density, and local characteristics of (3, -1) critical points, as defined within the context of quantum theory of atoms in molecules, do not conform with those of ordinary triple bonds. In Na3Al2- and Na4Al2 clusters non-nuclear attractors form between the electropositive Al atoms acting like pseudo atoms. The bond between boron atoms in B2Al3- is more similar to an ordinary triple covalent bond benefiting from the exchange-correlation component of the interatomic interaction energy as defined via interacting quantum atom theory. However, extreme electrostatic repulsion between negatively charged boron atoms attenuates this bond. Finally, current density analysis suggests that B2Al3- is a magnetic aromatic system, nearly 50% more aromatic compared to benzene.
RESUMO
Actinide-actinide bonds are rare. Only a few experimental systems with An-An bonds have been described so far. Recent experimental characterization of the U2@Ih(7)-C80 (J. Am. Chem. Soc. 2018, 140, 3907) system with one-electron two-center (OETC) U-U bonds as was predicted by some of us (Phys. Chem. Chem. Phys. 2015, 17, 24182) encourages the search for more examples of actinide-actinide bonding in fullerene cages. Here, we investigate actinide-actinide bonding in An2@D5h(1)-C70, An2@Ih(7)-C80, and An2@D5h(1)-C90 (An = Ac-Cm) endohedral metallofullerenes (EMFs). Using different methods of the chemical bonding analysis, we show that most of the studied An2@C70 and An2@C80 systems feature one or more one-electron two-center actinide-actinide bonds. Unique bonding patterns are revealed in plutonium EMFs. The Pu2@Ih(7)-C80 features two OETC Pu-Pu π bonds without any evidence of a corresponding σ bond. In the Pu2@D5h(1)-C90 with rPu-Pu = 5.9 Å, theory predicts the longest metal-metal bond ever described. Predicted systems are thermodynamically stable and should be, in principle, experimentally accessible, though radioactivity of studied metals may be a serious obstacle.
RESUMO
Here, we discuss that unlike bond dissociation energy (BDE) that is a state function quantity, the energy components of the energy decomposition analysis (EDA), i.e. electrostatic interaction, Pauli repulsion, and orbital interaction, are path (process) function quantities. Being a path function means that EDA energy components are not uniquely defined, i.e. the relative magnitudes of the orbital interaction, Pauli repulsion, and electrostatic components may vary depending on the selected pathway for EDA. Therefore, at best, EDA can define whether closely related chemical bonds are more or less ionic/covalent compared with each other. However, a precise assessment of the nature of a certain type of chemical bond using EDA is a questionable task. Besides, we briefly discuss that the widely used EDA pathway, which is merely an arbitrary choice among infinite possible paths, comes to conclusions not consistent with our widely accepted knowledge of bond formation even for the simplest molecules.
RESUMO
We have studied the magnetic response properties and aromaticity of osmium metallacycles by means of scalar-relativistic (1c) and fully relativistic (4c) density functional theory computations. For osmabenzene, whose aromatic character is controversial, a topological analysis of the current density has revealed the presence of a unique σ-type Craig-Möbius magnetic aromaticity. We show that the partially filled osmium valence shell induces a large paratropic current, which may interfere with certain methods commonly used to analyze aromaticity, in particular NICS. Further, we show that the extreme deshielding of the light atoms in the vicinity of the osmium atoms in osmapentalene derivatives is not a consequence of aromaticity but can be explained by paramagnetic couplings between σOs-C bonding orbitals and the π*Os orbitals. We demonstrate that variations in the orientation of the induced magnetic currents through the molecule dictates the alternating signs of the spin-orbit contribution to the NMR chemical shift.
RESUMO
A newly introduced Na-B bond in NaBH3 - has been a challenge for the chemical bonding community. Here, a series of MBH3 - (M=Li, Na, K) species and NaB(CN)3 - are studied within the context of quantum chemical topology approaches. The analyses suggest that M-B interaction cannot be classified as an ordinary covalent, dative, or even simple ionic interaction. The interactions are controlled by coulombic forces between the metals and the substituents on boron, for example, H or CN, more than the direct M-B interaction. On the other hand, while the characteristics of the (3, -1) critical points of the bonds are comparable to weak hydrogen bonds, not covalent bonds, the metal and boron share a substantial sum of electrons. To the best of the author's knowledge, the characteristics of these bonds are unprecedented among known molecules. Considering all paradoxical properties of these bonds, they are herein described as ionic-enforced covalent bonds.
RESUMO
Employing multiscale in silico modeling, we propose switching molecular diodes on the basis of endohedral fullerenes (fullerene switching diode, FSD), encapsulated with polar molecules of general type MX (M: metal, X: nonmetal) to be used for data storage and processing. Here, we demonstrate for MX@C70 systems that the relative orientation of enclosed MX with respect to a set of electrodes connected to the system can be controlled by application of oriented external electric field(s). We suggest systems with two- and four-terminal electrodes, in which the source and drain electrodes help the current to pass through the device and help the switching between the conductive states of FSD via applied voltage. The gate electrodes then assist the switching by effectively lowering the energy barrier between local minima via stabilizing the transition state of switching process if the applied voltage between the source and drain is insufficient to switch the MX inside the fullerene. Using nonequilibrium Green's function combined with density functional theory (DFT-NEGF) computations, we further show that conductivity of the studied MX@C70 systems depends on the relative orientation of MX inside the cage with respect to the electrodes. Therefore, the orientation of the MX inside C70 can be both enforced ("written") and retrieved ("read") by applied voltage. The studied systems thus behave like voltage-sensitive switching molecular diodes, which is reminiscent of a molecular memristor.
RESUMO
A recent study (Sci. Adv. 2017, 3, e1602833) has shown that FHâ â â OH2 hydrogen bond in a HFâ H2 O pair substantially shortens, and the H-F bond elongates upon encapsulation of the cluster in C70 fullerene. This has been attributed to compression of the HFâ H2 O pair inside the cavity of C70 . Herein, we present theoretical evidence that the effect is not caused by a mere compression of the H2 Oâ HF pair, but it is related to a strong lone-pair-π (LP-π) bonding with the fullerene cage. To support this argument, a systematic electronic structure study of selected small molecules (HF, H2 O, and NH3 ) and their pairs enclosed in fullerene cages (C60 , C70 , and C90 ) has been performed. Bonding analysis revealed unique LP-πcage interactions with a charge-depletion character in the bonding region, unlike usual LP-π bonds. The LP-πcage interactions were found to be responsible for elongation of the H-F bond. Thus, the HF appears to be more acidic inside the cage. The shortening of the FHâ â â OH2 contact in (HFâ H2 O)@C70 originates from an increased acidity of the HF inside the fullerenes. Such trends were also observed in other studied systems.
RESUMO
Magnetic properties are commonly used to identify new aromatic molecules because it is generally believed that magnetization and energetic stability are correlated. To verify the potential correlation between the energy and magnetic response properties, we examined a set of 198 isomers of C6 H6 . The energy and magnetic properties of these molecules can be directly compared with no need to invoke any arbitrary reference state because the studied systems are all isomers. Benzene is the global minimum on the potential energy surface of C6 H6 , 35â kcal mol-1 lower in energy than the second most stable isomer, fulvene. Unlike its electronic energy, isotropic magnetizability of benzene is slightly lower than the average magnetizability of its isomers. Altogether, 44 isomers of C6 H6 were identified to have more negative magnetic susceptibility than benzene but were between 67.0 to 168.6â kcal mol-1 higher in energy than benzene. However, benzene is unique in two ways. Analyzing the paramagnetic contribution to the magnetic susceptibility as originally suggested by Bilde and Hansen (Mol. Phys., 1997, 92, 237) revealed that 53â molecules have lower paramagnetic susceptibility than benzene but among monocyclic systems benzene has the least paramagnetic susceptibility. Furthermore, benzene has the largest out-of-plane magnetic susceptibility that originates from the strongest ring current among all studied species.