Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Agron Sustain Dev ; 42(5): 101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36254245

RESUMO

Ways are being sought to reduce the environmental impact of ruminant livestock farming. Integration of trees into farming systems has been advocated as a measure to deliver ecosystem services, inter alia climate regulation and adaptation, water quality regulation, provisioning of fibre, fuel and habitats to support biodiversity. Despite the rapid expansion of cattle farming in the tropics, notably in Latin America, there is little robust evidence on the extent to which trees are able to mitigate the effects of cattle farming in this ecological zone. This article describes a case study conducted on a large, specialised dairy farm in Costa Rica, where two-thirds of the field boundaries are live tree fences. For the first time, this study quantifies the offset potential of trees by estimating rate of carbon sequestration in a silvopastoral system (SPS) in the tropics. It was found that over a 30-month interval, trees sequestered 1.43 Mg C ha-1 year-1 above and below ground. Attributional life cycle assessment (LCA) (cradle to farm gate) was applied to calculate the carbon footprint of milk produced on the farm for the years 2016 to 2018. Trees in live fences offset 21-37% of milk footprints, resulting in residual net footprints of 0.75±0.25 to 0.84±0.26 kg CO2 eq. kg-1 milk. Exclusion of life cycle emissions that may not fall within national emission inventory accounting (e.g. fertiliser manufacture and feed production) increased the mean offset from 27 to 34% of gross milk footprint. Although based on temporally limited data (30 months), our findings indicate that a live fence SPS could play an important role in short- to medium-term climate mitigation from livestock production, buying time for deployment of long-term mitigation and adaptation planning. Supplementary Information: The online version contains supplementary material available at 10.1007/s13593-022-00834-z.

2.
Nat Commun ; 14(1): 6766, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880217

RESUMO

Predominantly linear use of wood curtails the potential climate-change mitigation contribution of forestry value-chains. Using lifecycle assessment, we show that more cascading and especially circular uses of wood can provide immediate and sustained mitigation by reducing demand for virgin wood, which increases forest carbon sequestration and storage, and benefits from substitution for fossil-fuel derived products, reducing net greenhouse gas emissions. By United Kingdom example, the circular approach of recycling medium-density fibreboard delivers 75% more cumulative climate-change mitigation by 2050, compared with business-as-usual. Early mitigation achieved by circular and cascading wood use complements lagged mitigation achieved by afforestation; and in combination these measures could cumulatively mitigate 258.8 million tonnes CO2e by 2050. Despite the clear benefits of implementing circular economy principles, we identify many functional barriers impeding the structural reorganisation needed for such complex system change, and propose enablers to transform the forestry value-chain into an effective societal change system and lead to coherent action.

3.
Nat Commun ; 12(1): 3831, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158494

RESUMO

Afforestation is an important greenhouse gas (GHG) mitigation strategy but the efficacy of commercial forestry is disputed. Here, we calculate the potential GHG mitigation of a UK national planting strategy of 30,000 ha yr-1 from 2020 to 2050, using dynamic life cycle assessment. What-if scenarios vary: conifer-broadleaf composition, harvesting, product breakouts, and decarbonisation of substituted energy and materials, to estimate 100-year GHG mitigation. Here we find forest growth rate is the most important determinant of cumulative mitigation by 2120, irrespective of whether trees are harvested. A national planting strategy of commercial forest could mitigate 1.64 Pg CO2e by 2120 (cumulative), compared with 0.54-1.72 Pg CO2e for planting only conservation forests, depending on species composition. Even after heavy discounting of future product substitution credits based on industrial decarbonisation projections, GHG mitigation from harvested stands typically surpasses unharvested stands. Commercial afforestation can deliver effective GHG mitigation that is robust to future decarbonisation pathways and wood uses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA