Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38762712

RESUMO

BACKGROUND: Antiphospholipid antibody syndrome (APS) is an acquired autoimmune disorder characterized by recurrent venous or arterial thrombosis and/or pregnancy complications. Recently, thrombotic APS was linked to increased neutrophil extracellular traps (NET) formation, suggesting an association between NETs and the severity of APS-related thrombosis. METHODS: We performed a retrospective study on patients tested for presence of antiphospholipid antibodies (990 negative and 374 positive) to evaluate the association between the neutrophil activation state, estimated by the neutrophil reactive index (NEU-RI), a parameter routinely available from some haematology analysers, and antiphospholipid antibodies. RESULTS: We do not observe a difference in NEU-RI values between positive and negative patients globally. However, interestingly, we highlight an association between high titers of IgM and low NEU-RI values indicating a lower neutrophil activation. CONCLUSION: Our data are in line with the recent questioning about the putative clinical consistency of positive solid-phase aPL IgM.

2.
Nature ; 544(7648): 120-123, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28329765

RESUMO

Adiponectin receptors (ADIPORs) are integral membrane proteins that control glucose and lipid metabolism by mediating, at least in part, a cellular ceramidase activity that catalyses the hydrolysis of ceramide to produce sphingosine and a free fatty acid (FFA). The crystal structures of the two receptor subtypes, ADIPOR1 and ADIPOR2, show a similar overall seven-transmembrane-domain architecture with large unoccupied cavities and a zinc binding site within the seven transmembrane domain. However, the molecular mechanisms by which ADIPORs function are not known. Here we describe the crystal structure of ADIPOR2 bound to a FFA molecule and show that ADIPOR2 possesses intrinsic basal ceramidase activity that is enhanced by adiponectin. We also identify a ceramide binding pose and propose a possible mechanism for the hydrolytic activity of ADIPOR2 using computational approaches. In molecular dynamics simulations, the side chains of residues coordinating the zinc rearrange quickly to promote the nucleophilic attack of a zinc-bound hydroxide ion onto the ceramide amide carbonyl. Furthermore, we present a revised ADIPOR1 crystal structure exhibiting a seven-transmembrane-domain architecture that is clearly distinct from that of ADIPOR2. In this structure, no FFA is observed and the ceramide binding pocket and putative zinc catalytic site are exposed to the inner membrane leaflet. ADIPOR1 also possesses intrinsic ceramidase activity, so we suspect that the two distinct structures may represent key steps in the enzymatic activity of ADIPORs. The ceramidase activity is low, however, and further studies will be required to characterize fully the enzymatic parameters and substrate specificity of ADIPORs. These insights into ADIPOR function will enable the structure-based design of potent modulators of these clinically relevant enzymes.


Assuntos
Ceramidas/química , Ceramidas/metabolismo , Receptores de Adiponectina/química , Receptores de Adiponectina/metabolismo , Adiponectina/metabolismo , Adiponectina/farmacologia , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Ácidos Graxos não Esterificados/química , Ácidos Graxos não Esterificados/metabolismo , Humanos , Hidrólise/efeitos dos fármacos , Hidróxidos/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Domínios Proteicos , Zinco/metabolismo
3.
J Thromb Thrombolysis ; 56(2): 351-354, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37300604

RESUMO

Over the last decade, the concept of Clonal haematopoiesis of undetermined potential (CHIP) has emerged. Low frequency somatic mutations in hematopoietic cells can occur with age and might allow formation of clones in individuals with no characterized haematological pathology. These CHIP mutations are associated with an increased risk of cancer or atherothrombosis, and their prevalence are more and more studied in pathologies with an inflammatory component. In our study, we analysed, by next generation sequencing, the prevalence of CHIP mutation in 94 patients with deep venous thrombosis (DVT), distinguishing two clinical phenotypes: provoked distal and non-provoked proximal DVTs. We show that there is no difference in CHIP prevalence between these two groups, nor with a matched-aged control group. The number of mutation per patients and the affected genes remain also the same between the three groups. Consequently and despite the relative small number of patients in each cohort, it seems that CHIP is not a strong concern in venous thromboembolism.


Assuntos
Neoplasias , Tromboembolia Venosa , Trombose Venosa , Humanos , Tromboembolia Venosa/etiologia , Hematopoiese Clonal , Fatores de Risco , Trombose Venosa/complicações , Neoplasias/complicações , Mutação
4.
Dev Biol ; 377(1): 293-304, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23438814

RESUMO

Skeletal muscle retains a resident stem cell population called satellite cells. Although mitotically quiescent in mature muscle, satellite cells can be activated to produce myoblast progeny to generate myonuclei for skeletal muscle homoeostasis, hypertrophy and repair. Regulation of satellite cell function in adult requires redeployment of many of the regulatory networks fundamental to developmental myogenesis. Involved in such control of muscle stem cell fate in embryos are members of the Pitx gene family of bicoid-class homeodomain proteins. Here, we investigated the expression and function of all three Pitx genes in muscle satellite cells of adult mice. Endogenous Pitx1 was undetectable, whilst Pitx2a, Pitx2b and Pitx2c were at low levels in proliferating satellite cells, but increased during the early stages of myogenic differentiation. By contrast, proliferating satellite cells expressed robust amounts of Pitx3, with levels then decreasing as cells differentiated, although Pitx3 remained expressed in unfused myoblasts. To examine the role of Pitx genes in satellite cell function, retroviral-mediated expression of Pitx1, all Pitx2 isoforms or Pitx3, was used. Constitutive expression of any Pitx isoform suppressed satellite cell proliferation, with the cells undergoing enhanced myogenic differentiation. Conversely, myogenic differentiation into multinucleated myotubes was decreased when Pitx2 or Pitx3 levels were reduced using siRNA. Together, our results show that Pitx genes play a role in regulating satellite cell function during myogenesis in adult.


Assuntos
Envelhecimento/genética , Diferenciação Celular/genética , Desenvolvimento Muscular/genética , Fatores de Transcrição Box Pareados/genética , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Animais , Ciclo Celular/genética , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição Box Pareados/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Regulação para Cima/genética
5.
Dev Biol ; 382(2): 504-16, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23911934

RESUMO

Skeletal muscle retains a resident stem cell population called satellite cells, which are mitotically quiescent in mature muscle, but can be activated to produce myoblast progeny for muscle homeostasis, hypertrophy and repair. We have previously shown that satellite cell activation is partially controlled by the bioactive phospholipid, sphingosine-1-phosphate, and that S1P biosynthesis is required for muscle regeneration. Here we investigate the role of sphingosine-1-phosphate receptor 3 (S1PR3) in regulating murine satellite cell function. S1PR3 levels were high in quiescent myogenic cells before falling during entry into cell cycle. Retrovirally-mediated constitutive expression of S1PR3 led to suppressed cell cycle progression in satellite cells, but did not overtly affect the myogenic program. Conversely, satellite cells isolated from S1PR3-null mice exhibited enhanced proliferation ex-vivo. In vivo, acute cardiotoxin-induced muscle regeneration was enhanced in S1PR3-null mice, with bigger muscle fibres compared to control mice. Importantly, genetically deleting S1PR3 in the mdx mouse model of Duchenne muscular dystrophy produced a less severe muscle dystrophic phenotype, than when signalling though S1PR3 was operational. In conclusion, signalling though S1PR3 suppresses cell cycle progression to regulate function in muscle satellite cells.


Assuntos
Ciclo Celular , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/citologia , Transdução de Sinais , Receptores de Esfingosina-1-Fosfato
6.
Front Med (Lausanne) ; 9: 1062112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619613

RESUMO

Introduction: Coronavirus disease 2019 (COVID-19) is a respiratory disease triggered by immunopathological mechanisms that cause excessive inflammation and leukocyte dysfunction. Neutrophils play a critical role in the innate immunity and are able to produce neutrophil extracellular traps (NETs: NETosis process) to combat infections. Some NETs markers are increased in patients who died from COVID-19. Recently, the neutrophil fluorescence variable (NEU-SFL), available on certain automated complete blood count (CBC) analyzers, has been correlated with NET formation and may reflect NETosis in patients. Here we evaluate whether NEU-SFL measured after admission of COVID-19 patients is associated with in-hospital survival or death. Patients and methods: 1,852 patients admitted for severe COVID-19 at Nîmes University Hospital in 2021 were retrospectively included in the study: 1,564 who survived the hospital stay and 288 who did not. The NEU-SFL was obtained on the Sysmex™ XN-10® analyzer and values for survivors and non-survivors were compared. The intra-patient NEU-SFL variations between the hospital entry and the last day of hospitalization were also analyzed (IRB 22.06.01, NCT05413824). Results: Non-survivors presented higher NEU-SFL values. NEU-SFL values above the 4th quartile were independently associated with a 2.88-fold risk of death. Furthermore, the difference of NEU-SFL values between the first and the last available data during hospitalization revealed that a decrease in NEU-SFL was associated to survivors and vice versa. Conclusion: Our study reinforces the role of neutrophils and NETosis in the pathophysiology and prognosis of COVID-19. Further studies combining NEU-SFL with other NETosis markers could improve the management of COVID-19 patients.

7.
Front Cell Dev Biol ; 10: 1099038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684420

RESUMO

Background: NETosis occurs in the context of infection or inflammation and results in the expulsion of decondensed DNA filaments called NETs (Neutrophil Extracellular Traps) into the extracellular environment. NETosis activates coagulation and contributes to the thrombotic risk of inflammatory diseases. To date, two mechanisms of NETosis have been identified: suicidal NETosis, in which neutrophils die after expelling the filaments; and vital NETosis, in which expulsion appears without altering the membrane. Human pregnancy is associated with a mild pro-inflammatory state, which is increased in the event of complications such as preeclampsia (PE). NETosis has been observed in these situations, but the mechanism of its production has not yet been studied. The aim of our study was to evaluate the balance of vital vs. suicidal NETosis in normal pregnancy and in PE. Patients/Methods: Neutrophils from healthy volunteers were stimulated with plasma from normal pregnancies (n = 13) and from women developing preeclampsia (n = 13). Immunofluorescent labelling was performed to determine the percentages and origin of NETs in both groups. Inhibition with suicidal or vital NETosis inhibitors was also performed to validate our results. Results: We found a significant increase in NETs in women with PE compared to women with normal pregnancies. We showed that vital and non-vital NETosis are present in normal and preeclamptic pregnancies. We demonstrated that the higher proportion of NETs observed in PE was due to non-vital NETosis whose main component is represented by suicidal NETosis. Discussion: These results suggest the important part of non-vital NETosis in the pathophysiology of PE.

8.
F S Sci ; 3(1): 84-94, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35559998

RESUMO

OBJECTIVE: To explore the regulatory role of soluble CD146 (sCD146) and its interaction with galectin-1 (Gal1) in placenta-mediated complications of pregnancy. DESIGN: Prospective pilot and experimental studies. SETTING: University-affiliated hospital and academic research laboratory. PATIENT(S): One hundred fifteen women divided into three groups: 30 healthy, nonpregnant women, 50 women with normal pregnancies, and 35 with placenta-mediated pregnancy complications. INTERVENTION(S): Wound-healing experiments were conducted to study trophoblast migration. MAIN OUTCOME MEASURE(S): Quantification of sCD146 and Gal1 by enzyme-linked immunosorbent assay. Analysis of trophoblast migration by wound closure. RESULT(S): Concomitant detection of sCD146 and Gal1 showed lower sCD146 and higher Gal1 concentrations in women with normal pregnancies compared with nonpregnant women. In addition, follow-up of these women revealed a decrease in sCD146 associated with an increase in Gal1 throughout pregnancy. In contrast, in women with preeclampsia, we found significantly higher sCD146 concentrations compared with women with normal pregnancies and no modification of Gal1. We emphasize the opposing effects of sCD146 and Gal, since, unlike Gal1, sCD146 inhibits trophoblast migration. Moreover, the migratory effect of Gal1 was abrogated with the use of an anti-CD146 blocking antibody or the use of small interfering RNA to silence VEGFR2 expression. This suggests that trophoblast migration is mediated though the interaction of Gal1 with CD146, further activating the VEGFR2 signaling pathway. Significantly, sCD146 blocked the migratory effects of Gal1 on trophoblasts and inhibited its secretion, suggesting that sCD146 acts as a ligand trap. CONCLUSION(S): Soluble CD146 could be proposed as a biomarker in preeclampsia and a potential therapeutic target. CLINICAL TRIAL REGISTRATION NUMBER: NCT 01736826.


Assuntos
Pré-Eclâmpsia , Trofoblastos , Antígeno CD146/metabolismo , Feminino , Galectina 1 , Humanos , Gravidez , Estudos Prospectivos , Trofoblastos/metabolismo
9.
Thromb Haemost ; 121(7): 877-890, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33423243

RESUMO

NETosis is an innate immune response occurring after infection or inflammation: activated neutrophils expel decondensed DNA in complex with histones into the extracellular environment in a controlled manner. It activates coagulation and fuels the risk of thrombosis. Human pregnancy is associated with a mild proinflammatory state characterized by circulatory neutrophil activation which is further increased in complicated pregnancies, placenta-mediated complications being associated with an increased thrombotic risk. This aberrant activation leads to an increased release of nucleosomes in the blood flow. The aim of our study was to initially quantify nucleosome-bound histones in normal pregnancy and in placenta-mediated complication counterpart. We analyzed the role of histones on extravillous trophoblast function. Circulating nucleosome-bound histones H3 (Nu.QH3.1, Nu.QH3PanCit, Nu.QH3K27me3) and H4 (Nu.QH4K16Ac) were increased in complicated pregnancies. In vitro using the extravillous cell line HTR-8/SVNeo, we observed that free recombinant H2B, H3, and H4 inhibited migration in wound healing assay, but only H3 also blocked invasion in Matrigel-coated Transwell experiments. H3 and H4 also induced apoptosis, whereas H2B did not. Finally, the negative effects of H3 on invasion and apoptosis could be restored with enoxaparin, a low-molecular-weight heparin (LMWH), but not with aspirin. Different circulating nucleosome-bound histones are increased in complicated pregnancy and this would affect migration, invasion, and induce apoptosis of extravillous trophoblasts. Histones might be part of the link between the risk of thrombosis and pregnancy complications, with an effect of LMWH on both.


Assuntos
Armadilhas Extracelulares , Histonas/sangue , Histonas/metabolismo , Placenta/metabolismo , Complicações na Gravidez/sangue , Trofoblastos/metabolismo , Adulto , Apoptose , Aspirina/metabolismo , Linhagem Celular , Movimento Celular , Enoxaparina/metabolismo , Feminino , França , Heparina de Baixo Peso Molecular/metabolismo , Humanos , Cinética , Neutrófilos , Nucleossomos/metabolismo , Projetos Piloto , Pré-Eclâmpsia/metabolismo , Gravidez , Estudos Prospectivos , Adulto Jovem
10.
Mol Biol Cell ; 18(5): 1734-43, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17332503

RESUMO

Cadherins are transmembrane glycoproteins that mediate Ca(2+)-dependent homophilic cell-cell adhesion and play crucial role during skeletal myogenesis. M-cadherin is required for myoblast fusion into myotubes, but its mechanisms of action remain unknown. The goal of this study was to cast some light on the nature of the M-cadherin-mediated signals involved in myoblast fusion into myotubes. We found that the Rac1 GTPase activity is increased at the time of myoblast fusion and it is required for this process. Moreover, we showed that M-cadherin-dependent adhesion activates Rac1 and demonstrated the formation of a multiproteic complex containing M-cadherin, the Rho-GEF Trio, and Rac1 at the onset of myoblast fusion. Interestingly, Trio knockdown efficiently blocked both the increase in Rac1-GTP levels, observed after M-cadherin-dependent contact formation, and myoblast fusion. We conclude that M-cadherin-dependent adhesion can activate Rac1 via the Rho-GEF Trio at the time of myoblast fusion.


Assuntos
Caderinas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mioblastos Esqueléticos/metabolismo , Neuropeptídeos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Sequência de Bases , Caderinas/antagonistas & inibidores , Adesão Celular , Fusão Celular , Linhagem Celular , Ativação Enzimática , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos , Complexos Multiproteicos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/citologia , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/genética , Proteínas rac1 de Ligação ao GTP
11.
J Thromb Haemost ; 18(12): 3371-3380, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32979032

RESUMO

BACKGROUND: Placenta-mediated pregnancy complications generate short- and long-term adverse medical outcomes for both the mother and the fetus. Nucleosomes and free DNA (fDNA) have been described in patients suffering from a wide range of inflammatory conditions. OBJECTIVE: The objective of our study was to compare nucleosomes and fDNA circulating levels during pregnancy and particularly in women developing a placenta-mediated complication according to the subtype (preeclampsia or intrauterine growth restriction) (NCT01736826). PATIENTS/METHODS: A total of 115 women were prospectively included in the study across three groups: 30 healthy non-pregnant women, 50 with normal pregnancy, and 35 with a complicated pregnancy. Blood samples were taken up to every 4 weeks for several women with normal pregnancy and nucleosomes and fDNA were quantified using enzyme-linked immunosorbent assay and quantitative polymerase chain reaction, respectively. RESULTS: We show that nucleosomes and fDNA concentrations significantly increase during normal pregnancy, with concentrations at delivery differing between the two groups. Interestingly, we show that concentrations differ according to the type of placenta-mediated complications, with higher levels in preeclampsia compared to intrauterine growth restriction. CONCLUSIONS: These data suggest that nucleosomes and fDNA may be additional actors participating in placenta-mediated pregnancy complications.


Assuntos
Nucleossomos , Pré-Eclâmpsia , DNA , Feminino , Retardo do Crescimento Fetal/diagnóstico , Humanos , Placenta , Pré-Eclâmpsia/diagnóstico , Gravidez
12.
Cell Prolif ; 53(1): e12717, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31825138

RESUMO

OBJECTIVES: DISHEVELLED, EGL-10, PLECKSTRIN (DEP) domain-containing 1B (DEPDC1B) promotes dismantling of focal adhesions and coordinates detachment events during cell cycle progression. DEPDC1B is overexpressed in several cancers with expression inversely correlated with patient survival. Here, we analysed the role of DEPDC1B in the regulation of murine and human skeletal myogenesis. MATERIALS AND METHODS: Expression dynamics of DEPDC1B were examined in murine and human myoblasts and rhabdomyosarcoma cells in vitro by RT-qPCR and/or immunolabelling. DEPDC1B function was mainly tested via siRNA-mediated gene knockdown. RESULTS: DEPDC1B was expressed in proliferating murine and human myoblasts, with expression then decreasing markedly during myogenic differentiation. SiRNA-mediated knockdown of DEPDC1B reduced myoblast proliferation and induced entry into myogenic differentiation, with deregulation of key cell cycle regulators (cyclins, CDK, CDKi). DEPDC1B and ß-catenin co-knockdown was unable to rescue proliferation in myoblasts, suggesting that DEPDC1B functions independently of canonical WNT signalling during myogenesis. DEPDC1B can also suppress RHOA activity in some cell types, but DEPDC1B and RHOA co-knockdown actually had an additive effect by both further reducing proliferation and enhancing myogenic differentiation. DEPDC1B was expressed in human Rh30 rhabdomyosarcoma cells, where DEPDC1B or RHOA knockdown promoted myogenic differentiation, but without influencing proliferation. CONCLUSION: DEPDC1B plays a central role in myoblasts by driving proliferation and preventing precocious myogenic differentiation during skeletal myogenesis in both mouse and human.


Assuntos
Proliferação de Células , Proteínas Ativadoras de GTPase/biossíntese , Regulação Neoplásica da Expressão Gênica , Mioblastos Esqueléticos/metabolismo , Proteínas de Neoplasias/metabolismo , Rabdomiossarcoma/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Mioblastos Esqueléticos/patologia , Rabdomiossarcoma/patologia
14.
Nat Commun ; 9(1): 5437, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575723

RESUMO

Alkaline ceramidases (ACERs) are a class of poorly understood transmembrane enzymes controlling the homeostasis of ceramides. They are implicated in human pathophysiology, including progressive leukodystrophy, colon cancer as well as acute myeloid leukemia. We report here the crystal structure of the human ACER type 3 (ACER3). Together with computational studies, the structure reveals that ACER3 is an intramembrane enzyme with a seven transmembrane domain architecture and a catalytic Zn2+ binding site in its core, similar to adiponectin receptors. Interestingly, we uncover a Ca2+ binding site physically and functionally connected to the Zn2+ providing a structural explanation for the known regulatory role of Ca2+ on ACER3 enzymatic activity and for the loss of function in E33G-ACER3 mutant found in leukodystrophic patients.


Assuntos
Ceramidase Alcalina/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Ceramidase Alcalina/química , Ceramidase Alcalina/genética , Animais , Sítios de Ligação/genética , Cálcio/metabolismo , Cristalografia por Raios X , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação Puntual , Conformação Proteica , Receptores de Adiponectina/química , Células Sf9 , Spodoptera
15.
Biochem J ; 391(Pt 2): 261-8, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15963030

RESUMO

The Rho family of small GTPases are signalling molecules involved in cytoskeleton remodelling and gene transcription. Their activities are important for many cellular processes, including myogenesis. In particular, RhoA positively regulates skeletal-muscle differentiation. We report in the present study that the active form of RhoA increases the expression of utrophin, the autosomal homologue of dystrophin in the mouse C2C12 and rat L8 myoblastic cell lines. Even though this RhoA-dependent utrophin increase is higher in proliferating myoblasts, it is maintained during myogenic differentiation. This occurs via two mechanisms: (i) transcriptional activation of the utrophin promoter A and (ii) post-translational stabilization of utrophin. In addition, RhoA increases plasma-membrane localization of utrophin. Thus RhoA activation up-regulates utrophin levels and enhances its localization at the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Regulação para Cima , Utrofina/genética , Utrofina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Ativação Enzimática , Camundongos , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , Regiões Promotoras Genéticas/genética , Transporte Proteico , Ratos , Transcrição Gênica , Proteína rhoA de Ligação ao GTP/genética
16.
Mol Biol Cell ; 27(17): 2653-61, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27413008

RESUMO

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of skeletal muscle origin in children and adolescents. Among RMS subtypes, alveolar rhabdomyosarcoma (ARMS), which is characterized by the presence of the PAX3-FOXO1A or PAX7-FOXO1A chimeric oncogenic transcription factor, is associated with poor prognosis and a strong risk of metastasis compared with the embryonal subtype (ERMS). To identify molecular pathways involved in ARMS aggressiveness, we first characterized the migratory behavior of cell lines derived from ARMS and ERMS biopsies using a three-dimensional spheroid cell invasion assay. ARMS cells were more invasive than ERMS cells and adopted an ellipsoidal morphology to efficiently invade the extracellular matrix. Moreover, the invasive potential of ARMS cells depended on ROCK activity, which is regulated by the GTPase RhoE. Specifically, RhoE expression was low in ARMS biopsies, and its overexpression in ARMS cells reduced their invasion potential. Conversely, ARHGAP25, a GTPase-activating protein for Rac, was up-regulated in ARMS biopsies. Moreover, we found that ARHGAP25 inhibits Rac activity downstream of ROCKII and is required for ARMS cell invasion. Our results indicate that the RhoE/ROCK/ARHGAP25 signaling pathway promotes ARMS invasive potential and identify these proteins as potential therapeutic targets for ARMS treatment.


Assuntos
Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Diferenciação Celular , Linhagem Celular , Movimento Celular/genética , Movimento Celular/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Músculo Esquelético/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Rabdomiossarcoma , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/metabolismo , Transdução de Sinais/genética , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA