Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
PLoS Biol ; 22(3): e3002542, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38502663

RESUMO

Coral reefs provide ecosystem benefits to millions of people but are threatened by rapid environmental change and ever-increasing human pressures. Restoration is becoming a priority strategy for coral reef conservation, yet implementation remains challenging and it is becoming increasingly apparent that indirect conservation and restoration approaches will not ensure the long-term sustainability of coral reefs. The important role of environmental conditions in restoration practice are currently undervalued, carrying substantial implications for restoration success. Giving paramount importance to environmental conditions, particularly during the pre-restoration planning phase, has the potential to bring about considerable improvements in coral reef restoration and innovation. This Essay argues that restoration risk may be reduced by adopting an environmentally aware perspective that gives historical, contemporary, and future context to restoration decisions. Such an approach will open up new restoration opportunities with improved sustainability that have the capacity to dynamically respond to environmental trajectories.


Assuntos
Antozoários , Recifes de Corais , Animais , Humanos , Ecossistema , Conservação dos Recursos Naturais , Previsões
2.
Rapid Commun Mass Spectrom ; 37(15): e9533, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37127435

RESUMO

RATIONALE: Organisms that grow a hard carbonate shell or skeleton, such as foraminifera, corals or molluscs, incorporate trace elements into their shell during growth that reflect the environmental change and biological activity they experienced during life. These geochemical signals locked within the carbonate are archives used in proxy reconstructions to study past environments and climates, to decipher taxonomy of cryptic species and to resolve evolutionary responses to climatic changes. METHODS: Here, we use laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as a time-resolved acquisition to quantify the elemental composition of carbonate shells and skeletons. We present the LABLASTER (Laser Ablation BLASt Through Endpoint in R) package, which imports a single time-resolved LA-ICP-MS analysis, then detects when the laser has ablated through the carbonate as a function of change in signal over time and outputs key summary statistics. We provide two examples within the package: a fossil planktic foraminifer and a tropical coral skeleton. RESULTS: We present the first R package that automates the selection of desired data during data reduction workflows. This is achieved by automating the detection of when the laser has ablated through a sample using a smoothed time series, followed by removal of off-target data points. The functions are flexible and adjust dynamically to maximise the duration of the desired geochemical target signal, making this package applicable to a wide range of heterogenous bioarchives. Visualisation tools for manual validation are also included. CONCLUSIONS: LABLASTER increases transparency and repeatability by algorithmically identifying when the laser has either ablated fully through a sample or across a mineral boundary and is thus no longer documenting a geochemical signal associated with the desired sample. LABLASTER's focus on better data targeting means more accurate extraction of biological and geochemical signals.


Assuntos
Terapia a Laser , Oligoelementos , Espectrometria de Massas/métodos , Lasers , Carbonatos
3.
Nature ; 548(7669): 573-577, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28858305

RESUMO

The Palaeocene-Eocene Thermal Maximum (PETM) was a global warming event that occurred about 56 million years ago, and is commonly thought to have been driven primarily by the destabilization of carbon from surface sedimentary reservoirs such as methane hydrates. However, it remains controversial whether such reservoirs were indeed the source of the carbon that drove the warming. Resolving this issue is key to understanding the proximal cause of the warming, and to quantifying the roles of triggers versus feedbacks. Here we present boron isotope data-a proxy for seawater pH-that show that the ocean surface pH was persistently low during the PETM. We combine our pH data with a paired carbon isotope record in an Earth system model in order to reconstruct the unfolding carbon-cycle dynamics during the event. We find strong evidence for a much larger (more than 10,000 petagrams)-and, on average, isotopically heavier-carbon source than considered previously. This leads us to identify volcanism associated with the North Atlantic Igneous Province, rather than carbon from a surface reservoir, as the main driver of the PETM. This finding implies that climate-driven amplification of organic carbon feedbacks probably played only a minor part in driving the event. However, we find that enhanced burial of organic matter seems to have been important in eventually sequestering the released carbon and accelerating the recovery of the Earth system.

4.
Nature ; 533(7603): 380-4, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27111509

RESUMO

The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ(11)B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the canonical range (1.5 to 4.5 degrees Celsius), indicating that a large fraction of the warmth of the early Eocene greenhouse was driven by increased CO2 concentrations, and that climate sensitivity was relatively constant throughout this period.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Clima , Boro/análise , Boro/química , Foraminíferos/química , Sedimentos Geológicos/química , História Antiga , Camada de Gelo/química , Oceano Índico , Isótopos/análise , Isótopos/química , Plâncton/química , Tanzânia , Temperatura
5.
Proc Natl Acad Sci U S A ; 115(8): 1754-1759, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29378969

RESUMO

Ocean acidification (OA) is considered an important threat to coral reef ecosystems, because it reduces the availability of carbonate ions that reef-building corals need to produce their skeletons. However, while theory predicts that coral calcification rates decline as carbonate ion concentrations decrease, this prediction is not consistently borne out in laboratory manipulation experiments or in studies of corals inhabiting naturally low-pH reefs today. The skeletal growth of corals consists of two distinct processes: extension (upward growth) and densification (lateral thickening). Here, we show that skeletal density is directly sensitive to changes in seawater carbonate ion concentration and thus, to OA, whereas extension is not. We present a numerical model of Porites skeletal growth that links skeletal density with the external seawater environment via its influence on the chemistry of coral calcifying fluid. We validate the model using existing coral skeletal datasets from six Porites species collected across five reef sites and use this framework to project the impact of 21st century OA on Porites skeletal density across the global tropics. Our model predicts that OA alone will drive up to 20.3 ± 5.4% decline in the skeletal density of reef-building Porites corals.

6.
Rapid Commun Mass Spectrom ; 34(11): e8762, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32067285

RESUMO

RATIONALE: To detect the small changes in past pH, the boron isotope ratio of coral carbonates, expressed as the δ11 B value, needs to be both precise and accurate (2sd <<1‰). Boron measurements by Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) require the boron to be carefully purified before analysis, which is time consuming, and requires specialist training. Here, we use the prepFAST-MC method that enables the automatic extraction of B (up to 25 ng load) from a CaCO3 matrix. METHODS: Samples were purified using the prepFAST-MC automated system with a ~25-µL column of Amberlite IRA743 resin. Boron isotope measurements were performed by MC-ICPMS. The effects of matrix load, speed of sample loading onto the column, and blank contamination were tested to evaluate the effects on the purification process. The optimised protocol was tested on various standards and samples of aragonite corals. RESULTS: The blank contribution for the approach is ~60 pg and is negligible given our sample size (<0.2% sample size). Efficiency of matrix removal is demonstrated with the addition of up to 1.6 mg of dissolved low-B calcium carbonate to NIST SRM 951 with no impact on the accuracy of δ11 B values. The Japanese Geological Survey Porites reference material JCp-1, boric acid standard NIST SRM 951, and seawater, all processed on the prepFAST-MC system, give δ11 B values within error of literature values (δ11 BJCp-1 = 24.31 ± 0.20‰ (2sd, n = 20); δ11 BNIST 951 = -0.02 ± 0.15‰ (2sd, n = 13) and δ11 BSeawater = 39.50 ± 0.06‰ (2sd, n = 2)). Results obtained from the coral Siderastrea siderea purified with the prepFAST-MC system show an average offset from the manual ion-exchange protocols of Δδ11 B = 0.01 ± 0.28‰ (2sd, n = 12). CONCLUSIONS: Our study demonstrates the capacity of the prepFAST-MC method to generate accurate and reproducible δ11 B values for a range of materials, without fractionation, with efficient matrix removal and with negligible blank contribution.


Assuntos
Antozoários/química , Boro , Espectrometria de Massas/métodos , Animais , Automação , Boro/análise , Boro/química , Carbonato de Cálcio/análise , Carbonato de Cálcio/química , Concentração de Íons de Hidrogênio , Isótopos/análise , Isótopos/química , Água do Mar/química
7.
Proc Natl Acad Sci U S A ; 114(50): 13114-13119, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180424

RESUMO

During the Mid-Pleistocene Transition (MPT; 1,200-800 kya), Earth's orbitally paced ice age cycles intensified, lengthened from ∼40,000 (∼40 ky) to ∼100 ky, and became distinctly asymmetrical. Testing hypotheses that implicate changing atmospheric CO2 levels as a driver of the MPT has proven difficult with available observations. Here, we use orbitally resolved, boron isotope CO2 data to show that the glacial to interglacial CO2 difference increased from ∼43 to ∼75 µatm across the MPT, mainly because of lower glacial CO2 levels. Through carbon cycle modeling, we attribute this decline primarily to the initiation of substantive dust-borne iron fertilization of the Southern Ocean during peak glacial stages. We also observe a twofold steepening of the relationship between sea level and CO2-related climate forcing that is suggestive of a change in the dynamics that govern ice sheet stability, such as that expected from the removal of subglacial regolith or interhemispheric ice sheet phase-locking. We argue that neither ice sheet dynamics nor CO2 change in isolation can explain the MPT. Instead, we infer that the MPT was initiated by a change in ice sheet dynamics and that longer and deeper post-MPT ice ages were sustained by carbon cycle feedbacks related to dust fertilization of the Southern Ocean as a consequence of larger ice sheets.

8.
Rapid Commun Mass Spectrom ; 33(10): 959-968, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30866057

RESUMO

RATIONALE: Boron isotope analysis of marine carbonates by laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) offers the potential for rapid sample throughput, and the means to examine micron-scale variations in the δ11 B signatures of fossil skeletons and shells/tests of marine organisms. Existing studies demonstrate an acceptable level of reproducibility is achievable, but also typically show a level of accuracy outside the limits required by most applications. Here we investigate matrix interference effects as a cause of inaccuracy and imprecision. METHODS: Analyses were performed on a standard format Thermo Scientific Neptune Plus MC-ICP mass spectrometer coupled to a New Wave Research 193 nm ArF laser ablation system. The effects of matrix interference on δ11 B analysis were investigated through analyses of a set of reference materials with differing B/Ca ratios. Three approaches to correct for matrix-induced effects were trialled: (1) use of matrix-matched standards, (2) utilisation of the relationship between δ11 B inaccuracy and11 B/43 Ca, 11 B/40 ArCa4+ or 11 B/Cainterference from three reference materials with known δ11 B values and varying B/Ca ratios, and (3) direct characterisation of the (sloping) interference itself. RESULTS: Matrix interference from scattered Ca ions on 10 B can impede both the accuracy and the reproducibility of δ11 B analysis by LA-MC-ICP-MS. Based on analyses of two in-house reference materials, deep sea coral PS69/3181 and inorganic calcite UWC-1, we find approach 2, following the 11 B/Cainterference relationship, gives the best mean accuracies (within 0.4‰ of solution values) and external reproducibilities (± 0.5‰ 2 SD for PS69/3181). This approach has been applied to analyses of an annual growth cycle of a Siderastrea siderea coral and eight Cibicidoides wuellerstorfi benthic foraminifera. Both coral and foraminifera data match solution MC-ICP-MS analyses within reported uncertainties. CONCLUSIONS: LA-MC-ICP-MS can produce accurate and precise δ11 B data to a 0.5‰ (2σ) level on <0.3 ng B after correction for Ca interference effects.

9.
Sensors (Basel) ; 19(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626131

RESUMO

Air Quality (AQ) is a very topical issue for many cities and has a direct impact on citizen health. The AQ of a large UK city is being investigated using low-cost Particulate Matter (PM) sensors, and the results obtained by these sensors have been compared with government operated AQ stations. In the first pilot deployment, six AQ Internet of Things (IoT) devices have been designed and built, each with four different low-cost PM sensors, and they have been deployed at two locations within the city. These devices are equipped with LoRaWAN wireless network transceivers to test city scale Low-Power Wide Area Network (LPWAN) coverage. The study concludes that (i) the physical device developed can operate at a city scale; (ii) some low-cost PM sensors are viable for monitoring AQ and for detecting PM trends; (iii) LoRaWAN is suitable for city scale sensor coverage where connectivity is an issue. Based on the findings from this first pilot project, a larger LoRaWAN enabled AQ sensor network is being deployed across the city of Southampton in the UK.

10.
Philos Trans A Math Phys Eng Sci ; 376(2130)2018 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30177567

RESUMO

'…there are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we know we don't know. But there are also unknown unknowns. There are things we don't know we don't know.' Donald Rumsfeld 12th February 2002.This article is part of a discussion meeting issue 'Hyperthermals: rapid and extreme global warming in our geological past'.

11.
Nature ; 488(7413): 609-14, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22932385

RESUMO

Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0-3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.


Assuntos
Altitude , Carbonato de Cálcio/análise , Ciclo do Carbono , Água do Mar/química , Atmosfera/química , Dióxido de Carbono/análise , Diatomáceas/metabolismo , Foraminíferos/metabolismo , Sedimentos Geológicos/química , Aquecimento Global/história , Aquecimento Global/estatística & dados numéricos , História do Século XXI , História Antiga , Biologia Marinha , Oxigênio/metabolismo , Oceano Pacífico , Temperatura
12.
Proc Natl Acad Sci U S A ; 110(4): 1209-14, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23292932

RESUMO

On 10(3)- to 10(6)-year timescales, global sea level is determined largely by the volume of ice stored on land, which in turn largely reflects the thermal state of the Earth system. Here we use observations from five well-studied time slices covering the last 40 My to identify a well-defined and clearly sigmoidal relationship between atmospheric CO(2) and sea level on geological (near-equilibrium) timescales. This strongly supports the dominant role of CO(2) in determining Earth's climate on these timescales and suggests that other variables that influence long-term global climate (e.g., topography, ocean circulation) play a secondary role. The relationship between CO(2) and sea level we describe portrays the "likely" (68% probability) long-term sea-level response after Earth system adjustment over many centuries. Because it appears largely independent of other boundary condition changes, it also may provide useful long-range predictions of future sea level. For instance, with CO(2) stabilized at 400-450 ppm (as required for the frequently quoted "acceptable warming" of 2 °C), or even at AD 2011 levels of 392 ppm, we infer a likely (68% confidence) long-term sea-level rise of more than 9 m above the present. Therefore, our results imply that to avoid significantly elevated sea level in the long term, atmospheric CO(2) should be reduced to levels similar to those of preindustrial times.

13.
Nature ; 458(7237): 493-6, 2009 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-19325631

RESUMO

Rivers are the dominant source of many elements and isotopes to the ocean. But this input from the continents is not balanced by the loss of the elements and isotopes through hydrothermal and sedimentary exchange with the oceanic crust, or by temporal changes in the marine inventory for elements that are demonstrably not in steady state. To resolve the problem of the observed imbalance in marine geochemical budgets, attention has been focused on uncertainties in the hydrothermal and sedimentary fluxes. In recent Earth history, temporally dynamic chemical weathering fluxes from the continents are an inevitable consequence of periodic glaciations. Chemical weathering rates on modern Earth are likely to remain far from equilibrium owing to the physical production of finely ground material at glacial terminations that acts as a fertile substrate for chemical weathering. Here we explore the implications of temporal changes in the riverine chemical weathering flux for oceanic geochemical budgets. We contend that the riverine flux obtained from observations of modern rivers is broadly accurate, but not representative of timescales appropriate for elements with oceanic residence longer than Quaternary glacial-interglacial cycles. We suggest that the pulse of rapid chemical weathering initiated at the last deglaciation has not yet decayed away and that weathering rates remain about two to three times the average for an entire late Quaternary glacial cycle. Taking into account the effect of the suggested non-steady-state process on the silicate weathering flux helps to reconcile the modelled marine strontium isotope budget with available data. Overall, we conclude that consideration of the temporal variability in riverine fluxes largely ameliorates long-standing problems with chemical and isotopic mass balances in the ocean.


Assuntos
Sedimentos Geológicos/química , Rios/química , Água do Mar/química , Atmosfera/química , Dióxido de Carbono/análise , Carbonatos/análise , Carbonatos/química , História Antiga , Camada de Gelo , Osmio/análise , Estrôncio/análise , Estrôncio/química , Isótopos de Estrôncio , Temperatura
14.
Nature ; 461(7267): 1110-3, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19749741

RESUMO

Geological and geochemical evidence indicates that the Antarctic ice sheet formed during the Eocene-Oligocene transition, 33.5-34.0 million years ago. Modelling studies suggest that such ice-sheet formation might have been triggered when atmospheric carbon dioxide levels (pCO2atm) fell below a critical threshold of approximately 750 p.p.m.v., but the timing and magnitude of pCO2atm relative to the evolution of the ice sheet has remained unclear. Here we use the boron isotope pH proxy on exceptionally well-preserved carbonate microfossils from a recently discovered geological section in Tanzania to estimate pCO2atm before, during and after the climate transition. Our data suggest that are reduction in pCO2atm occurred before the main phase of ice growth,followed by a sharp recovery to pre-transition values and then a more gradual decline. During maximum ice-sheet growth, pCO2atm was between approximately 450 and approximately 1,500 p.p.m.v., with a central estimate of approximately 760 p.p.m.v. The ice cap survived the period of pCO2atm recovery,although possibly with some reduction in its volume, implying (as models predict) a nonlinear response to climate forcing during melting. Overall, our results confirm the central role of declining pCO2atm in the development of the Antarctic ice sheet (in broad agreement with carbon cycle modelling) and help to constrain mechanisms and feedbacks associated with the Earth's biggest climate switch of the past 65 Myr.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Clima , Regiões Antárticas , Boro , Foraminíferos/química , Fósseis , História Antiga , Concentração de Íons de Hidrogênio , Camada de Gelo/química , Isótopos , Plâncton/química , Água do Mar/química , Sensibilidade e Especificidade , Tanzânia , Temperatura
15.
Nature ; 454(7208): 1102-5, 2008 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-18756254

RESUMO

It is thought that the Northern Hemisphere experienced only ephemeral glaciations from the Late Eocene to the Early Pliocene epochs (about 38 to 4 million years ago), and that the onset of extensive glaciations did not occur until about 3 million years ago. Several hypotheses have been proposed to explain this increase in Northern Hemisphere glaciation during the Late Pliocene. Here we use a fully coupled atmosphere-ocean general circulation model and an ice-sheet model to assess the impact of the proposed driving mechanisms for glaciation and the influence of orbital variations on the development of the Greenland ice sheet in particular. We find that Greenland glaciation is mainly controlled by a decrease in atmospheric carbon dioxide during the Late Pliocene. By contrast, our model results suggest that climatic shifts associated with the tectonically driven closure of the Panama seaway, with the termination of a permanent El Niño state or with tectonic uplift are not large enough to contribute significantly to the growth of the Greenland ice sheet; moreover, we find that none of these processes acted as a priming mechanism for glacial inception triggered by variations in the Earth's orbit.


Assuntos
Atmosfera/química , Dióxido de Carbono/metabolismo , Camada de Gelo , Dióxido de Carbono/análise , Clima , Groenlândia , História Antiga , América do Norte , Chuva , Fatores de Tempo
16.
PLoS One ; 19(6): e0305607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38917168

RESUMO

Geochemical proxies of sea surface temperature (SST) and seawater pH (pHsw) in scleractinian coral skeletons are valuable tools for reconstructing tropical climate variability. However, most coral skeletal SST and pHsw proxies are univariate methods that are limited in their capacity to circumvent non-climate-related variability. Here we present a novel multivariate method for reconstructing SST and pHsw from the geochemistry of coral skeletons. Our Scleractinian Multivariate Isotope and Trace Element (SMITE) method optimizes reconstruction skill by leveraging the covariance across an array of coral elemental and isotopic data with SST and pHsw. First, using a synthetic proxy experiment, we find that SMITE SST reconstruction statistics (correlation, accuracy, and precision) are insensitive to noise and variable calibration period lengths relative to Sr/Ca. While SMITE pHsw reconstruction statistics remain relative to δ11B throughout the same synthetic experiment, the magnitude of the long-term trend in pHsw is progressively lost under conditions of moderate-to-high analytical uncertainty. Next, we apply the SMITE method to an array of seven coral-based geochemical variables (B/Ca, δ11B, Li/Ca, Mg/Ca, Sr/Ca, U/Ca & Li/Mg) measured from two Bermudan Porites astreoides corals. Despite a <3.5 year calibration period, SMITE SST and pHsw estimates exhibit significantly better accuracy, precision, and correlation with their respective climate targets than the best single- and dual-proxy estimators. Furthermore, SMITE model parameters are highly reproducible between the two coral cores, indicating great potential for fossil applications (when preservation is high). The results shown here indicate that the SMITE method can outperform the most common coral-based SST and pHsw reconstructions methods to date, particularly in datasets with a large variety of geochemical variables. We therefore provide a list of recommendations and procedures for users to begin implementing the SMITE method as well as an open-source software package to facilitate dissemination of the SMITE method.


Assuntos
Antozoários , Água do Mar , Temperatura , Água do Mar/química , Concentração de Íons de Hidrogênio , Antozoários/química , Animais , Oligoelementos/análise
17.
Sci Data ; 11(1): 602, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849366

RESUMO

The skeletons of long-lived bamboo coral (Family Keratoisididae) are promising archives for deep-water palaeoceanographic reconstructions as they can record environmental variation at sub-decadal resolution in locations where in-situ measurements lack temporal coverage. Yet, detailed three dimensional (3D) characterisations of bamboo coral skeletal architecture are not routinely available and non-destructive investigations into microscale variations in calcification are rare. Here, we provide high-resolution micro-focus computed tomography (µCT) data of skeletal density for two species of bamboo coral (Acanella arbuscula: 5 specimens, voxel size, 15 µm (central branch scans) and 50 µm (complete structure scan); Keratoisis sp.: 4 specimens, voxel size, 15 µm) collected from the Labrador Sea and Baffin Bay deep-water basins, Eastern Canadian Arctic. These data provide reference models useful for developing methods to assess structural integrity and other fine-scale complexities in many biological, geological, and industrial systems. This will be of wider value to those investigating structural composition, arrangement and/or composition of complex architecture within the fields and subdisciplines of biology, ecology, medicine, environmental geology, and structural engineering.


Assuntos
Antozoários , Animais , Microtomografia por Raio-X , Imageamento Tridimensional , Canadá
18.
Sci Rep ; 14(1): 11121, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750108

RESUMO

The chemical and isotopic composition of stony coral skeletons form an important archive of past climate. However, these reconstructions are largely based on empirical relationships often complicated by "vital effects" arising from uncertain physiological processes of the coral holobiont. The skeletons of deep-sea corals, such as Desmophyllum dianthus, are characterised by micron-scale or larger geochemical heterogeneity associated with: (1) centres of calcification (COCs) where nucleation of new skeleton begins, and (2) fibres that thicken the skeleton. These features are difficult to sample cleanly using traditional techniques, resulting in uncertainty surrounding both the causes of geochemical differences and their influence on environmental signals. Here we combine optical, and in-situ chemical and isotopic, imaging tools across a range of spatial resolutions (~ 100 nm to 10 s of µm) in a correlative multimodal imaging (CMI) approach to isolate the microstructural geochemistry of each component. This reveals COCs are characterised by higher organic content, Mg, Li and Sr and lower U, B and δ11B compared to fibres, reflecting the contrasting biomineralisation mechanisms employed to construct each feature. CMI is rarely applied in Environmental/Earth Sciences, but here we illustrate the power of this approach to unpick the "vital effects" in D. dianthus, and by extension, other scleractinian corals.


Assuntos
Antozoários , Antozoários/metabolismo , Animais , Calcificação Fisiológica , Biomineralização
19.
J Plankton Res ; 45(5): 732-745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779673

RESUMO

The planktic foraminifera Neogloboquadrina pachyderma is a calcifying marine protist and the dominant planktic foraminifera species in the polar oceans, making it a key species in marine polar ecosystems. The calcium carbonate shells of foraminifera are widely used in palaeoclimate studies because their chemical composition reflects the seawater conditions in which they grow. This species provides unique proxy data for past surface ocean hydrography, which can provide valuable insight to future climate scenarios. However, little is known about the response of N. pachyderma to variable and changing environmental conditions. Here, we present observations from large-scale culturing experiments where temperature, salinity and carbonate chemistry were altered independently. We observed overall low mortality, calcification of new chambers and addition of secondary calcite crust in all our treatments. In-culture asexual reproduction events also allowed us to monitor the variable growth of N. pachyderma's offspring. Several specimens had extended periods of dormancy or inactivity after which they recovered. These observations suggest that N. pachyderma can tolerate, adapt to and calcify within a wide range of environmental conditions. This has implications for the species-level response to ocean warming and acidification, for future studies aiming to culture N. pachyderma and use in palaeoenvironmental reconstruction.

20.
Heliyon ; 9(5): e15943, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37187904

RESUMO

Particulate Matter (PM) low-cost sensors (LCS) present a cost-effective opportunity to improve the spatiotemporal resolution of airborne PM data. Previous studies focused on PM-LCS-reported hourly data and identified, without fully addressing, their limitations. However, PM-LCS provide measurements at finer temporal resolutions. Furthermore, government bodies have developed certifications to accompany new uses of these sensors, but these certifications have shortcomings. To address these knowledge gaps, PM-LCS of two models, 8 Sensirion SPS30 and 8 Plantower PMS5003, were collocated for one year with a Fidas 200S, MCERTS-certified PM monitor and were characterised at 2 min resolution, enabling replication of certification processes, and highlighting their limitations and improvements. Robust linear models using sensor-reported particle number concentrations and relative humidity, coupled with 2-week biannual calibration campaigns, achieved reference-grade performance, at median PM2.5 background concentration of 5.5 µg/m3, demonstrating that, with careful calibration, PM-LCS may cost-effectively supplement reference equipment in multi-nodes networks with fine spatiotemporality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA