Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 141(26): 3153-3165, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37130030

RESUMO

T cells engineered to express chimeric antigen receptors (CARs) targeting CD19 have demonstrated impressive activity against relapsed or refractory B-cell cancers yet fail to induce durable remissions for nearly half of all patients treated. Enhancing the efficacy of this therapy requires detailed understanding of the molecular circuitry that restrains CAR-driven antitumor T-cell function. We developed and validated an in vitro model that drives T-cell dysfunction through chronic CAR activation and interrogated how CAR costimulatory domains, central components of CAR structure and function, contribute to T-cell failure. We found that chronic activation of CD28-based CARs results in activation of classical T-cell exhaustion programs and development of dysfunctional cells that bear the hallmarks of exhaustion. In contrast, 41BB-based CARs activate a divergent molecular program and direct differentiation of T cells into a novel cell state. Interrogation using CAR T cells from a patient with progressive lymphoma confirmed the activation of this novel program in a failing clinical product. Furthermore, we demonstrate that 41BB-dependent activation of the transcription factor FOXO3 is directly responsible for impairing CAR T-cell function. These findings identify that costimulatory domains are critical regulators of CAR-driven T-cell failure and that targeted interventions are required to overcome costimulation-dependent dysfunctional programs.


Assuntos
Linfoma , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos de Linfócitos T/genética , Imunoterapia Adotiva/métodos , Linfócitos T , Linfoma/etiologia , Antígenos CD19
2.
Nucleic Acids Res ; 51(8): 3988-3999, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36951109

RESUMO

High fidelity tRNA aminoacylation by aminoacyl-tRNA synthetases is essential for cell viability. ProXp-ala is a trans-editing protein that is present in all three domains of life and is responsible for hydrolyzing mischarged Ala-tRNAPro and preventing mistranslation of proline codons. Previous studies have shown that, like bacterial prolyl-tRNA synthetase, Caulobacter crescentus ProXp-ala recognizes the unique C1:G72 terminal base pair of the tRNAPro acceptor stem, helping to ensure deacylation of Ala-tRNAPro but not Ala-tRNAAla. The structural basis for C1:G72 recognition by ProXp-ala is still unknown and was investigated here. NMR spectroscopy, binding, and activity assays revealed two conserved residues, K50 and R80, that likely interact with the first base pair, stabilizing the initial protein-RNA encounter complex. Modeling studies are consistent with direct interaction between R80 and the major groove of G72. A third key contact between A76 of tRNAPro and K45 of ProXp-ala was essential for binding and accommodating the CCA-3' end in the active site. We also demonstrated the essential role that the 2'OH of A76 plays in catalysis. Eukaryotic ProXp-ala proteins recognize the same acceptor stem positions as their bacterial counterparts, albeit with different nucleotide base identities. ProXp-ala is encoded in some human pathogens; thus, these results have the potential to inform new antibiotic drug design.


Assuntos
Aminoacil-tRNA Sintetases , RNA de Transferência de Prolina , Humanos , RNA de Transferência de Prolina/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Prolina/química , Aminoacilação de RNA de Transferência , Códon , Domínio Catalítico
3.
Cancer Immunol Immunother ; 73(9): 179, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960949

RESUMO

Adoptive cellular therapy (ACT) using memory-like (ML) natural killer (NK) cells, generated through overnight ex vivo activation with IL-12, IL-15, and IL-18, has shown promise for treating hematologic malignancies. We recently reported that a multifunctional fusion molecule, HCW9201, comprising IL-12, IL-15, and IL-18 domains could replace individual cytokines for priming human ML NK cell programming ("Prime" step). However, this approach does not include ex vivo expansion, thereby limiting the ability to test different doses and schedules. Here, we report the design and generation of a multifunctional fusion molecule, HCW9206, consisting of human IL-7, IL-15, and IL-21 cytokines. We observed > 300-fold expansion for HCW9201-primed human NK cells cultured for 14 days with HCW9206 and HCW9101, an IgG1 antibody, recognizing the scaffold domain of HCW9206 ("Expand" step). This expansion was dependent on both HCW9206 cytokines and interactions of the IgG1 mAb with CD16 receptors on NK cells. The resulting "Prime and Expand" ML NK cells exhibited elevated metabolic capacity, stable epigenetic IFNG promoter demethylation, enhanced antitumor activity in vitro and in vivo, and superior persistence in NSG mice. Thus, the "Prime and Expand" strategy represents a simple feeder cell-free approach to streamline manufacturing of clinical-grade ML NK cells to support multidose and off-the-shelf ACT.


Assuntos
Memória Imunológica , Células Matadoras Naturais , Proteínas Recombinantes de Fusão , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Humanos , Animais , Proteínas Recombinantes de Fusão/genética , Camundongos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Imunoterapia Adotiva/métodos , Interleucina-15/metabolismo
4.
Blood ; 139(13): 1999-2010, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34780623

RESUMO

New therapies are needed for patients with relapsed/refractory (rel/ref) diffuse large B-cell lymphoma (DLBCL) who do not benefit from or are ineligible for stem cell transplant and chimeric antigen receptor therapy. The CD30-targeted, antibody-drug conjugate brentuximab vedotin (BV) and the immunomodulator lenalidomide (Len) have demonstrated promising activity as single agents in this population. We report the results of a phase 1/dose expansion trial evaluating the combination of BV/Len in rel/ref DLBCL. Thirty-seven patients received BV every 21 days, with Len administered continuously for a maximum of 16 cycles. The maximum tolerated dose of the combination was 1.2 mg/kg BV with 20 mg/d Len. BV/Len was well tolerated with a toxicity profile consistent with their use as single agents. Most patients required granulocyte colony-stimulating factor support because of neutropenia. The overall response rate was 57% (95% CI, 39.6-72.5), complete response rate, 35% (95% CI, 20.7-52.6); median duration of response, 13.1 months; median progression-free survival, 10.2 months (95% CI, 5.5-13.7); and median overall survival, 14.3 months (95% CI, 10.2-35.6). Response rates were highest in patients with CD30+ DLBCL (73%), but they did not differ according to cell of origin (P = .96). NK cell expansion and phenotypic changes in CD8+ T-cell subsets in nonresponders were identified by mass cytometry. BV/Len represents a potential treatment option for patients with rel/ref DLBCL. This combination is being further explored in a phase 3 study (registered on https://clinicaltrials.org as NCT04404283). This trial was registered on https://clinicaltrials.gov as NCT02086604.


Assuntos
Brentuximab Vedotin , Lenalidomida , Linfoma Difuso de Grandes Células B , Brentuximab Vedotin/efeitos adversos , Humanos , Imunoconjugados/efeitos adversos , Lenalidomida/efeitos adversos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Resultado do Tratamento
5.
Blood ; 139(8): 1177-1183, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-34797911

RESUMO

Natural killer (NK) cells are a promising alternative to T cells for cancer immunotherapy. Adoptive therapies with allogeneic, cytokine-activated NK cells are being investigated in clinical trials. However, the optimal cytokine support after adoptive transfer to promote NK cell expansion, and persistence remains unclear. Correlative studies from 2 independent clinical trial cohorts treated with major histocompatibility complex-haploidentical NK cell therapy for relapsed/refractory acute myeloid leukemia revealed that cytokine support by systemic interleukin-15 (IL-15; N-803) resulted in reduced clinical activity, compared with IL-2. We hypothesized that the mechanism responsible was IL-15/N-803 promoting recipient CD8 T-cell activation that in turn accelerated donor NK cell rejection. This idea was supported by increased proliferating CD8+ T-cell numbers in patients treated with IL-15/N-803, compared with IL-2. Moreover, mixed lymphocyte reactions showed that IL-15/N-803 enhanced responder CD8 T-cell activation and proliferation, compared with IL-2 alone. Additionally, IL-15/N-803 accelerated the ability of responding T cells to kill stimulator-derived memory-like NK cells, demonstrating that additional IL-15 can hasten donor NK cell elimination. Thus, systemic IL-15 used to support allogeneic cell therapy may paradoxically limit their therapeutic window of opportunity and clinical activity. This study indicates that stimulating patient CD8 T-cell allo-rejection responses may critically limit allogeneic cellular therapy supported with IL-15. This trial was registered at www.clinicaltrials.gov as #NCT03050216 and #NCT01898793.


Assuntos
Antineoplásicos/administração & dosagem , Linfócitos T CD8-Positivos/imunologia , Transplante de Células-Tronco Hematopoéticas , Imunoterapia Adotiva , Interleucina-15/administração & dosagem , Células Matadoras Naturais/transplante , Leucemia Mieloide Aguda , Proteínas Recombinantes de Fusão/administração & dosagem , Células Alógenas/imunologia , Feminino , Humanos , Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Masculino
6.
Blood ; 139(11): 1670-1683, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-34871371

RESUMO

Pediatric and young adult (YA) patients with acute myeloid leukemia (AML) who relapse after allogeneic hematopoietic cell transplantation (HCT) have an extremely poor prognosis. Standard salvage chemotherapy and donor lymphocyte infusions (DLIs) have little curative potential. Previous studies showed that natural killer (NK) cells can be stimulated ex vivo with interleukin-12 (IL-12), -15, and -18 to generate memory-like (ML) NK cells with enhanced antileukemia responses. We treated 9 pediatric/YA patients with post-HCT relapsed AML with donor ML NK cells in a phase 1 trial. Patients received fludarabine, cytarabine, and filgrastim followed 2 weeks later by infusion of donor lymphocytes and ML NK cells from the original HCT donor. ML NK cells were successfully generated from haploidentical and matched-related and -unrelated donors. After infusion, donor-derived ML NK cells expanded and maintained an ML multidimensional mass cytometry phenotype for >3 months. Furthermore, ML NK cells exhibited persistent functional responses as evidenced by leukemia-triggered interferon-γ production. After DLI and ML NK cell adoptive transfer, 4 of 8 evaluable patients achieved complete remission at day 28. Two patients maintained a durable remission for >3 months, with 1 patient in remission for >2 years. No significant toxicity was experienced. This study demonstrates that, in a compatible post-HCT immune environment, donor ML NK cells robustly expand and persist with potent antileukemic activity in the absence of exogenous cytokines. ML NK cells in combination with DLI present a novel immunotherapy platform for AML that has relapsed after allogeneic HCT. This trial was registered at https://clinicaltrials.gov as #NCT03068819.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Criança , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Células Matadoras Naturais , Leucemia Mieloide Aguda/terapia , Transplante Homólogo , Doadores não Relacionados
7.
Brain ; 146(2): 739-748, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35180300

RESUMO

Vaccination against viruses has rarely been associated with Guillain-Barré syndrome (GBS), and an association with the COVID-19 vaccine is unknown. We performed a population-based study of National Health Service data in England and a multicentre surveillance study from UK hospitals to investigate the relationship between COVID-19 vaccination and GBS. Firstly, case dates of GBS identified retrospectively in the National Immunoglobulin Database from 8 December 2021 to 8 July 2021 were linked to receipt dates of COVID-19 vaccines using data from the National Immunisation Management System in England. For the linked dataset, GBS cases temporally associated with vaccination within a 6-week risk window of any COVID-19 vaccine were identified. Secondly, we prospectively collected incident UK-wide (four nations) GBS cases from 1 January 2021 to 7 November 2021 in a separate UK multicentre surveillance database. For this multicentre UK-wide surveillance dataset, we explored phenotypes of reported GBS cases to identify features of COVID-19 vaccine-associated GBS. Nine hundred and ninety-six GBS cases were recorded in the National Immunoglobulin Database from January to October 2021. A spike of GBS cases above the 2016-2020 average occurred in March-April 2021. One hundred and ninety-eight GBS cases occurred within 6 weeks of the first-dose COVID-19 vaccination in England [0.618 cases per 100,000 vaccinations; 176 ChAdOx1 nCoV-19 (AstraZeneca), 21 tozinameran (Pfizer) and one mRNA-1273 (Moderna)]. The 6-week excess of GBS (compared to the baseline rate of GBS cases 6-12 weeks after vaccination) occurred with a peak at 24 days post-vaccination; first-doses of ChAdOx1 nCoV-19 accounted for the excess. No excess was seen for second-dose vaccination. The absolute number of excess GBS cases from January-July 2021 was between 98-140 cases for first-dose ChAdOx1 nCoV-19 vaccination. First-dose tozinameran and second-dose of any vaccination showed no excess GBS risk. Detailed clinical data from 121 GBS patients were reported in the separate multicentre surveillance dataset during this timeframe. No phenotypic or demographic differences identified between vaccine-associated and non-vaccinated GBS cases occurring in the same timeframe. Analysis of the linked NID/NIMS dataset suggested that first-dose ChAdOx1 nCoV-19 vaccination is associated with an excess GBS risk of 0.576 (95% confidence interval 0.481-0.691) cases per 100 000 doses. However, examination of a multicentre surveillance dataset suggested that no specific clinical features, including facial weakness, are associated with vaccination-related GBS compared to non-vaccinated cases. The pathogenic cause of the ChAdOx1 nCoV-19 specific first dose link warrants further study.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Síndrome de Guillain-Barré , Vacinas contra Influenza , Humanos , Vacina BNT162 , ChAdOx1 nCoV-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/complicações , Vacinas contra COVID-19/efeitos adversos , Síndrome de Guillain-Barré/induzido quimicamente , Síndrome de Guillain-Barré/epidemiologia , Imunoglobulinas , Estudos Retrospectivos , Medicina Estatal , Vacinação/efeitos adversos
8.
Nucleic Acids Res ; 50(3): 1753-1769, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35104890

RESUMO

Cre recombinase selectively recognizes DNA and prevents non-specific DNA cleavage through an orchestrated series of assembly intermediates. Cre recombines two loxP DNA sequences featuring a pair of palindromic recombinase binding elements and an asymmetric spacer region, by assembly of a tetrameric synaptic complex, cleavage of an opposing pair of strands, and formation of a Holliday junction intermediate. We used Cre and loxP variants to isolate the monomeric Cre-loxP (54 kDa), dimeric Cre2-loxP (110 kDa), and tetrameric Cre4-loxP2 assembly intermediates, and determined their structures using cryo-EM to resolutions of 3.9, 4.5 and 3.2 Å, respectively. Progressive and asymmetric bending of the spacer region along the assembly pathway enables formation of increasingly intimate interfaces between Cre protomers and illuminates the structural bases of biased loxP strand cleavage order and half-the-sites activity. Application of 3D variability analysis to the tetramer data reveals constrained conformational sampling along the pathway between protomer activation and Holliday junction isomerization. These findings underscore the importance of protein and DNA flexibility in Cre-mediated site selection, controlled activation of alternating protomers, the basis for biased strand cleavage order, and recombination efficiency. Such considerations may advance development of site-specific recombinases for use in gene editing applications.


Assuntos
DNA Cruciforme , Proteínas Virais , Sítios de Ligação , Microscopia Crioeletrônica , DNA/química , Integrases/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , Subunidades Proteicas/genética , Recombinação Genética , Proteínas Virais/metabolismo
9.
Nucleic Acids Res ; 50(14): 8154-8167, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35848927

RESUMO

RNase P is a ribonucleoprotein (RNP) that catalyzes removal of the 5' leader from precursor tRNAs in all domains of life. A recent cryo-EM study of Methanocaldococcus jannaschii (Mja) RNase P produced a model at 4.6-Å resolution in a dimeric configuration, with each holoenzyme monomer containing one RNase P RNA (RPR) and one copy each of five RNase P proteins (RPPs; POP5, RPP30, RPP21, RPP29, L7Ae). Here, we used native mass spectrometry (MS), mass photometry (MP), and biochemical experiments that (i) validate the oligomeric state of the Mja RNase P holoenzyme in vitro, (ii) find a different stoichiometry for each holoenzyme monomer with up to two copies of L7Ae, and (iii) assess whether both L7Ae copies are necessary for optimal cleavage activity. By mutating all kink-turns in the RPR, we made the discovery that abolishing the canonical L7Ae-RPR interactions was not detrimental for RNase P assembly and function due to the redundancy provided by protein-protein interactions between L7Ae and other RPPs. Our results provide new insights into the architecture and evolution of RNase P, and highlight the utility of native MS and MP in integrated structural biology approaches that seek to augment the information obtained from low/medium-resolution cryo-EM models.


Assuntos
Proteínas Arqueais , Methanocaldococcus , Ribonuclease P , Proteínas Arqueais/metabolismo , Methanocaldococcus/enzimologia , Methanocaldococcus/genética , Conformação Proteica , RNA de Transferência/metabolismo , Ribonuclease P/metabolismo , Relação Estrutura-Atividade
10.
Emerg Med J ; 41(3): 176-183, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37751994

RESUMO

BACKGROUND: Major incidents (MIs) are an important cause of death and disability. Triage tools are crucial to identifying priority 1 (P1) patients-those needing time-critical, life-saving interventions. Existing expert opinion-derived tools have limited evidence supporting their use. This study employs machine learning (ML) to develop and validate models for novel primary and secondary triage tools. METHODS: Adults (16+ years) from the UK Trauma Audit and Research Network (TARN) registry (January 2008-December 2017) served as surrogates for MI victims, with P1 patients identified using predefined criteria. The TARN database was split chronologically into model training and testing (70:30) datasets. Input variables included physiological parameters, age, mechanism and anatomical location of injury. Random forest, extreme gradient boosted tree, logistic regression and decision tree models were trained to predict P1 status, and compared with existing tools (Battlefield Casualty Drills (BCD) Triage Sieve, CareFlight, Modified Physiological Triage Tool, MPTT-24, MSTART, National Ambulance Resilience Unit Triage Sieve and RAMP). Primary and secondary candidate models were selected; the latter was externally validated on patients from the UK military's Joint Theatre Trauma Registry (JTTR). RESULTS: Models were internally tested in 57 979 TARN patients. The best existing tool was the BCD Triage Sieve (sensitivity 68.2%, area under the receiver operating curve (AUC) 0.688). Inability to breathe spontaneously, presence of chest injury and mental status were most predictive of P1 status. A decision tree model including these three variables exhibited the best test characteristics (sensitivity 73.0%, AUC 0.782), forming the candidate primary tool. The proposed secondary tool (sensitivity 77.9%, AUC 0.817), applicable via a portable device, includes a fourth variable (injury mechanism). This performed favourably on external validation (sensitivity of 97.6%, AUC 0.778) in 5956 JTTR patients. CONCLUSION: Novel triage tools developed using ML outperform existing tools in a nationally representative trauma population. The proposed primary tool requires external validation prior to consideration for practical use. The secondary tool demonstrates good external validity and may be used to support decision-making by healthcare workers responding to MIs.


Assuntos
Traumatismos Torácicos , Triagem , Adulto , Humanos , Estudos Retrospectivos , Ambulâncias , Aprendizado de Máquina
11.
Proc Natl Acad Sci U S A ; 117(40): 24849-24858, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32968014

RESUMO

Mechanistic understanding of DNA recombination in the Cre-loxP system has largely been guided by crystallographic structures of tetrameric synaptic complexes. Those studies have suggested a role for protein conformational dynamics that has not been well characterized at the atomic level. We used solution nuclear magnetic resonance (NMR) spectroscopy to discover the link between intrinsic flexibility and function in Cre recombinase. Transverse relaxation-optimized spectroscopy (TROSY) NMR spectra show the N-terminal and C-terminal catalytic domains (CreNTD and CreCat) to be structurally independent. Amide 15N relaxation measurements of the CreCat domain reveal fast-timescale dynamics in most regions that exhibit conformational differences in active and inactive Cre protomers in crystallographic tetramers. However, the C-terminal helix αN, implicated in assembly of synaptic complexes and regulation of DNA cleavage activity via trans protein-protein interactions, is unexpectedly rigid in free Cre. Chemical shift perturbations and intra- and intermolecular paramagnetic relaxation enhancement (PRE) NMR data reveal an alternative autoinhibitory conformation for the αN region of free Cre, wherein it packs in cis over the protein DNA binding surface and active site. Moreover, binding to loxP DNA induces a conformational change that dislodges the C terminus, resulting in a cis-to-trans switch that is likely to enable protein-protein interactions required for assembly of recombinogenic Cre intasomes. These findings necessitate a reexamination of the mechanisms by which this widely utilized gene-editing tool selects target sites, avoids spurious DNA cleavage activity, and controls DNA recombination efficiency.


Assuntos
DNA/metabolismo , Integrases/química , Integrases/metabolismo , Sítios de Ligação , Cristalografia por Raios X , DNA/genética , Integrases/genética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos
12.
Biochemistry ; 61(2): 67-76, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34985267

RESUMO

The Cre-loxP gene editing tool enables site-specific editing of DNA without leaving lesions that must be repaired by error-prone cellular processes. Cre recombines two 34-bp loxP DNA sites that feature a pair of palindromic recombinase-binding elements flanking an asymmetric 8-bp spacer region, via assembly of a tetrameric intasome complex and formation of a Holliday junction intermediate. Recombination proceeds by coordinated nucleophilic attack by pairs of catalytic tyrosine residues on specific phosphodiester bonds in the spacer regions of opposing strands. Despite not making base-specific contacts with the asymmetric spacer region of the DNA, Cre exhibits a preference for initial cleavage on one of the strands, suggesting that intrinsic properties of the uncontacted 8-bp spacer region give rise to this preference. Furthermore, little is known about the structural and dynamic features of the loxP spacer that make it a suitable target for Cre. To enable NMR spectroscopic studies of the spacer, we have aimed to identify a fragment of the 34-bp loxP site that retains the structural features of the spacer while minimizing the spectral crowding and line-broadening seen in longer oligonucleotides. Sequence-specific chemical shift differences between spacer oligos of different lengths, and of a mutant that inverts strand cleavage order, reveal how both nearest-neighbor and next-nearest-neighbor effects dominate the chemical environment experienced by the spacer. We have identified a 16-bp oligonucleotide that preserves the structural environment of the spacer, setting the stage for NMR-based structure determination and dynamics investigations.


Assuntos
Bacteriófago P1/química , DNA Intergênico/química , Oligonucleotídeos/química , Bacteriófago P1/metabolismo , Sequência de Bases , DNA Intergênico/metabolismo , Integrases/química , Integrases/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação de Ácido Nucleico , Oligonucleotídeos/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo
13.
Blood ; 136(20): 2308-2318, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32614951

RESUMO

Natural killer (NK) cells are a promising cellular immunotherapy for cancer. Cytokine-induced memory-like (ML) NK cells differentiate after activation with interleukin-12 (IL-12), IL-15, and IL-18, exhibit potent antitumor responses, and safely induce complete remissions in patients with leukemia. However, many cancers are not fully recognized via NK cell receptors. Chimeric antigen receptors (CARs) have been used to enhance tumor-specific recognition by effector lymphocytes. We hypothesized that ML differentiation and CAR engineering would result in complementary improvements in NK cell responses against NK-resistant cancers. To test this idea, peripheral blood ML NK cells were modified to express an anti-CD19 CAR (19-CAR-ML), which displayed significantly increased interferon γ production, degranulation, and specific killing against NK-resistant lymphoma lines and primary targets compared with nonspecific control CAR-ML NK cells or conventional CAR NK cells. The 19-CAR and ML responses were synergistic and CAR specific and required immunoreceptor tyrosine-based activation motif signaling. Furthermore, 19-CAR-ML NK cells generated from lymphoma patients exhibited improved responses against their autologous lymphomas. 19-CAR-ML NK cells controlled lymphoma burden in vivo and improved survival in human xenograft models. Thus, CAR engineering of ML NK cells enhanced responses against resistant cancers and warrants further investigation, with the potential to broaden ML NK cell recognition against a variety of NK cell-resistant tumors.


Assuntos
Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Linfoma/imunologia , Receptores de Antígenos Quiméricos , Animais , Citotoxicidade Imunológica/imunologia , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Opt Express ; 30(23): 42155-42167, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366674

RESUMO

Here we realize the first reported integrated photonic devices fabricated using sputtered niobium-tantalum oxide films. Sputtered niobium-tantalum oxide films are highly promising for integrated photonics as they are scalable to high volume manufacturing, possess high refractive index, and are transparent in the ultraviolet through near infrared wavelength range. At a wavelength near 1550 nm, we observe propagation losses as low as 0.47 dB/cm in waveguides and ring resonators with resonator quality factors as high as 860,000. We also characterize the nonlinear performance of these films and find a Kerr coefficient (n2) of 1.2 ( ± 0.2) × 10-18 m2/W. With this high Kerr coefficient we demonstrate optical parametric oscillation in a ring resonator and supercontinuum generation in a waveguide.

15.
Brain ; 144(2): 682-693, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33313649

RESUMO

Reports of Guillain-Barré syndrome (GBS) have emerged during the Coronavirus disease 2019 (COVID-19) pandemic. This epidemiological and cohort study sought to investigate any causative association between COVID-19 infection and GBS. The epidemiology of GBS cases reported to the UK National Immunoglobulin Database was studied from 2016 to 2019 and compared to cases reported during the COVID-19 pandemic. Data were stratified by hospital trust and region, with numbers of reported cases per month. UK population data for COVID-19 infection were collated from UK public health bodies. In parallel, but separately, members of the British Peripheral Nerve Society prospectively reported incident cases of GBS during the pandemic at their hospitals to a central register. The clinical features, investigation findings and outcomes of COVID-19 (definite or probable) and non-COVID-19 associated GBS cases in this cohort were compared. The incidence of GBS treated in UK hospitals from 2016 to 2019 was 1.65-1.88 per 100 000 individuals per year. GBS incidence fell between March and May 2020 compared to the same months of 2016-19. GBS and COVID-19 incidences during the pandemic also varied between regions and did not correlate with one another (r = 0.06, 95% confidence interval: -0.56 to 0.63, P = 0.86). In the independent cohort study, 47 GBS cases were reported (COVID-19 status: 13 definite, 12 probable, 22 non-COVID-19). There were no significant differences in the pattern of weakness, time to nadir, neurophysiology, CSF findings or outcome between these groups. Intubation was more frequent in the COVID-19 affected cohort (7/13, 54% versus 5/22, 23% in COVID-19-negative) attributed to COVID-19 pulmonary involvement. Although it is not possible to entirely rule out the possibility of a link, this study finds no epidemiological or phenotypic clues of SARS-CoV-2 being causative of GBS. GBS incidence has fallen during the pandemic, which may be the influence of lockdown measures reducing transmission of GBS inducing pathogens such as Campylobacter jejuni and respiratory viruses.


Assuntos
COVID-19/epidemiologia , Síndrome de Guillain-Barré/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , SARS-CoV-2 , Reino Unido/epidemiologia , Adulto Jovem
16.
Immun Ageing ; 19(1): 60, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471343

RESUMO

BACKGROUND: Traumatic injury elicits a hyperinflammatory response and remodelling of the immune system leading to immuneparesis. This study aimed to evaluate whether traumatic injury results in a state of prematurely aged immune phenotype to relate this to clinical outcomes and a greater risk of developing additional morbidities post-injury. METHODS AND FINDINGS: Blood samples were collected from 57 critically injured patients with a mean Injury Severity Score (ISS) of 26 (range 15-75 years), mean age of 39.67 years (range 20-84 years), and 80.7% males, at days 3, 14, 28 and 60 post-hospital admission. 55 healthy controls (HC), mean age 40.57 years (range 20-85 years), 89.7% males were also recruited. The phenotype and frequency of adaptive immune cells were used to calculate the IMM-AGE score, an indicator of the degree of phenotypic ageing of the immune system. IMM-AGE was elevated in trauma patients at an early timepoint (day 3) in comparison with healthy controls (p < 0.001), driven by an increase in senescent CD8 T cells (p < 0.0001), memory CD8 T cells (p < 0.0001) and regulatory T cells (p < 0.0001) and a reduction in naïve CD8 T cells (p < 0.001) and overall T cell lymphopenia (p < 0 .0001). These changes persisted to day 60. Furthermore, the IMM-AGE scores were significantly higher in trauma patients (mean score 0.72) that developed sepsis (p = 0.05) in comparison with those (mean score 0.61) that did not. CONCLUSIONS: The profoundly altered peripheral adaptive immune compartment after critical injury can be used as a potential biomarker to identify individuals at a high risk of developing sepsis and this state of prematurely aged immune phenotype in biologically young individuals persists for up to two months post-hospitalisation, compromising the host immune response to infections. Reversing this aged immune system is likely to have a beneficial impact on short- and longer-term outcomes of trauma survivors.

17.
Biochemistry ; 59(27): 2518-2527, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32558551

RESUMO

Allostery pervades macromolecular function and drives cooperative binding of ligands to macromolecules. To decipher the mechanisms of cooperative ligand binding, it is necessary to define, at a microscopic level, the thermodynamic consequences of binding of each ligand to its energetically coupled site(s). However, extracting these microscopic constants is difficult for macromolecules with more than two binding sites, because the observable [e.g., nuclear magnetic resonance (NMR) chemical shift changes, fluorescence, and enthalpy] can be altered by allostery, thereby distorting its proportionality to site occupancy. Native mass spectrometry (MS) can directly quantify the populations of homo-oligomeric protein species with different numbers of bound ligands, provided the populations are proportional to ion counts and that MS-compatible electrolytes do not alter the overall thermodynamics. These measurements can help decipher allosteric mechanisms by providing unparalleled access to the statistical thermodynamic partition function. We used native MS (nMS) to study the cooperative binding of tryptophan (Trp) to Bacillus stearothermophilus trp RNA binding attenuation protein (TRAP), a ring-shaped homo-oligomeric protein complex with 11 identical binding sites. MS-compatible solutions did not significantly perturb protein structure or thermodynamics as assessed by isothermal titration calorimetry and NMR spectroscopy. Populations of Trpn-TRAP11 states were quantified as a function of Trp concentration by nMS. The population distributions could not be explained by a noncooperative binding model but were described well by a mechanistic nearest-neighbor cooperative model. Nonlinear least-squares fitting yielded microscopic thermodynamic constants that define the interactions between neighboring binding sites. This approach may be applied to quantify thermodynamic cooperativity in other ring-shaped proteins.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Geobacillus stearothermophilus/enzimologia , Espectrometria de Massas/métodos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Termodinâmica , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Triptofano/metabolismo , Regulação Alostérica , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Fenômenos Biofísicos , Modelos Moleculares , Proteínas de Ligação a RNA/isolamento & purificação , Relação Estrutura-Atividade , Fatores de Transcrição/isolamento & purificação
18.
Mol Microbiol ; 112(6): 1701-1717, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515876

RESUMO

In Schizosaccharomyces pombe, the expression of the zrt1 zinc uptake gene is tightly regulated by zinc status. When intracellular zinc levels are low, zrt1 is highly expressed. However, when zinc levels are high, transcription of zrt1 is blocked in a manner that is dependent upon the transcription factor Loz1. To gain additional insight into the mechanism by which Loz1 inhibits gene expression in high zinc, we used RNA-seq to identify Loz1-regulated genes, and ChIP-seq to analyze the recruitment of Loz1 to target gene promoters. We find that Loz1 is recruited to the promoters of 27 genes that are also repressed in high zinc in a Loz1-dependent manner. We also find that the recruitment of Loz1 to the majority of target gene promoters is dependent upon zinc and the motif 5'-CGN(A/C)GATCNTY-3', which we have named the Loz1 response element (LRE). Using reporter assays, we show that LREs are both required and sufficient for Loz1-mediated gene repression, and that the level of gene repression is dependent upon the number and sequence of LREs. Our results elucidate the Loz1 regulon in fission yeast and provide new insight into how eukaryotic cells are able to respond to changes in zinc availability in the environment.


Assuntos
Elementos de Resposta/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição/metabolismo , Zinco/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/genética , Homeostase , Regiões Promotoras Genéticas/genética , Elementos de Resposta/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Transcrição/genética , Dedos de Zinco/genética
19.
Am Heart J ; 226: 174-187, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32599258

RESUMO

As the severe acute respiratory syndrome coronavirus 2 virus pandemic continues to grow globally, an association is apparent between patients with underlying cardiovascular disease comorbidities and the risk of developing severe COVID-19. Furthermore, there are potential cardiac manifestations of severe acute respiratory syndrome coronavirus 2 including myocyte injury, ventricular dysfunction, coagulopathy, and electrophysiologic abnormalities. Balancing management of the infection and treatment of underlying cardiovascular disease requires further study. Addressing the increasing reports of health care worker exposure and deaths remains paramount. This review summarizes the most contemporary literature on the relationship of the cardiovascular system and COVID-19 and society statements with relevance to protection of health care workers, and provides illustrative case reports in this context.


Assuntos
Betacoronavirus , Doenças Cardiovasculares/complicações , Infecções por Coronavirus/complicações , Pessoal de Saúde , Pandemias , Pneumonia Viral/complicações , Síndrome Coronariana Aguda/epidemiologia , Adulto , Fatores Etários , Idoso , Antagonistas de Receptores de Angiotensina/efeitos adversos , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Arritmias Cardíacas/etiologia , Biomarcadores/sangue , COVID-19 , Cateterismo Cardíaco , Reanimação Cardiopulmonar , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/mortalidade , Sistema Cardiovascular , Comorbidade , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/prevenção & controle , Eletrocardiografia , Evolução Fatal , Feminino , Hospitalização/estatística & dados numéricos , Hospitalização/tendências , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Profissionais/epidemiologia , Doenças Profissionais/prevenção & controle , Pandemias/prevenção & controle , Equipamento de Proteção Individual , Pneumonia Viral/epidemiologia , Pneumonia Viral/mortalidade , Pneumonia Viral/prevenção & controle , SARS-CoV-2 , Função Ventricular
20.
Chembiochem ; 21(9): 1304-1308, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-31863714

RESUMO

Oligonucleotides are important therapeutic approaches, as evidenced by recent clinical successes with antisense oligonucleotides (ASOs) and double-stranded short interfering RNAs (siRNAs). Phosphorothioate (PS) modifications are a standard feature in the current generation of oligonucleotide therapeutics, but generate isomeric mixtures, leading to 2n isomers. All currently marketed therapeutic oligonucleotides (ASOs and siRNAs) are complex isomeric mixtures. Recent chemical methodologies for stereopure PS insertions have resulted in preliminary rules for ASOs, with multiple stereopure ASOs moving into clinical development. Although siRNAs have comparatively fewer PSs, the field has yet to embrace the idea of stereopure siRNAs. Herein, it has been investigated whether the individual isomers contribute equally to the in vivo activity of a representative siRNA. The results of a systematic evaluation of stereopure PS incorporation into antithrombin-3 (AT3) siRNA are reported and demonstrate that individual PS isomers dramatically affect in vivo activity. A standard siRNA design with six PS insertions was investigated and it was found that only about 10 % of the 64 possible isomers were as efficacious as the stereorandom control. Based on this data, it can be concluded that G1R stereochemistry is critical, G2R is important, G21S is preferable, and G22 and P1/P2 tolerate both isomers. Surprisingly, the disproportionate loss of efficacy for most isomers does not translate into significant gain for the productive isomers, and thus, warrants further mechanistic studies.


Assuntos
Antitrombinas/química , Hepatócitos/efeitos dos fármacos , Oligonucleotídeos Fosforotioatos/química , RNA de Cadeia Dupla/genética , RNA Interferente Pequeno/genética , Animais , Antitrombinas/metabolismo , Células Cultivadas , Hepatócitos/metabolismo , Camundongos , RNA de Cadeia Dupla/administração & dosagem , RNA de Cadeia Dupla/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA