Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pain ; 18: 17448069221118004, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35968561

RESUMO

Gerontological research reveals considerable interindividual variability in aging phenotypes, and emerging evidence suggests that high impact chronic pain may be associated with various accelerated biological aging processes. In particular, epigenetic aging is a robust predictor of health-span and disability compared to chronological age alone. The current study aimed to determine whether several epigenetic aging biomarkers were associated with high impact chronic pain in middle to older age adults (44-78 years old). Participants (n = 213) underwent a blood draw, demographic, psychosocial, pain and functional assessments. We estimated five epigenetic clocks and calculated the difference between epigenetic age and chronological age, which has been previously reported to predict overall mortality risk, as well as included additional derived variables of epigenetic age previously associated with pain. There were significant differences across Pain Impact groups in three out of the five epigenetic clocks examined (DNAmAge, DNAmPhenoAge and DNAmGrimAge), indicating that pain-related disability during the past 6 months was associated with markers of epigenetic aging. Only DNAmPhenoAge and DNAmGrimAge were associated with higher knee pain intensity during the past 48 h. Finally, pain catastrophizing, depressive symptomatology and more neuropathic pain symptoms were significantly associated with an older epigenome in only one of the five epigenetic clocks (i.e. DNAmGrimAge) after correcting for multiple comparisons (corrected p's < 0.05). Given the scant literature in relation to epigenetic aging and the complex experience of pain, additional research is needed to understand whether epigenetic aging may help identify people with chronic pain at greater risk of functional decline and poorer health outcomes.


Assuntos
Dor Crônica , Vida Independente , Biomarcadores , Dor Crônica/genética , Dor Crônica/psicologia , Metilação de DNA , Epigênese Genética , Epigenômica , Humanos , Vida Independente/psicologia
2.
J Neurosci ; 40(25): 4888-4899, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32376783

RESUMO

Age-related cognitive impairments are associated with differentially expressed genes (DEGs) linked to defined neural systems; however, studies examining multiple regions of the hippocampus fail to find links between behavior and transcription in the dentate gyrus (DG). We hypothesized that use of a task requiring intact DG function would emphasize molecular signals in the DG associated with a decline in performance. We used a water maze beacon discrimination task to characterize young and middle-age male F344 rats, followed by a spatial reference memory probe trial test. Middle-age rats showed increased variability in discriminating two identical beacons. Use of an allocentric strategy and formation of a spatial reference memory were not different between age groups; however, older animals compensated for impaired beacon discrimination through greater reliance on spatial reference memory. mRNA sequencing of hippocampal subregions indicated DEGs in the DG of middle-age rats, linked to synaptic function and neurogenesis, correlated with beacon discrimination performance, suggesting that senescence of the DG underlies the impairment. Few genes correlated with spatial memory across age groups, with a greater number in region CA1. Age-related CA1 DEGs, correlated with spatial memory, were linked to regulation of neural activity. These results indicate that the beacon task is sensitive to impairment in middle age, and distinct gene profiles are observed in neural circuits that underlie beacon discrimination performance and allocentric memory. The use of different strategies in older animals and associated transcriptional profiles could provide an animal model for examining cognitive reserve and neural compensation of aging.SIGNIFICANCE STATEMENT Hippocampal subregions are thought to differentially contribute to memory. We took advantage of age-related variability in performance on a water maze beacon task and next-generation sequencing to test the hypothesis that aging of the dentate gyrus is linked to impaired beacon discrimination and compensatory use of allocentric memory. The dentate gyrus expressed synaptic function and neurogenesis genes correlated with beacon discrimination in middle-age animals. Spatial reference memory was associated with CA1 transcriptional correlates linked to regulation of neural activity and use of an allocentric strategy. This is the first study examining transcriptomes of multiple hippocampal subregions to link age-related impairments associated with discrimination of feature overlap and alternate response strategies to gene expression in specific hippocampal subregions.


Assuntos
Envelhecimento Cognitivo/fisiologia , Giro Denteado/fisiologia , Hipocampo/fisiologia , Transcriptoma , Animais , Aprendizagem em Labirinto/fisiologia , Ratos , Ratos Endogâmicos F344 , Memória Espacial/fisiologia
3.
Glia ; 69(6): 1494-1514, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33586813

RESUMO

The role of microglia in mediating age-related changes in cognition and hippocampal synaptic function was examined by microglial depletion and replenishment using PLX3397. We observed age-related differences in microglial number and morphology, as well as increased Iba-1 expression, indicating microglial activation. PLX3397 treatment decreased microglial number, with aged rats exhibiting the lowest density. Young rats exhibited increased expression of pro-inflammatory cytokines during depletion and repopulation and maintenance of Iba-1 levels despite reduced microglial number. For aged rats, several cytokines increased with depletion and recovered during repopulation; however, aged rats did not fully recover microglial cell number or Iba-1 expression during repopulation, with a recovery comparable to young control levels rather than aged controls. Hippocampal CA3-CA1 synaptic transmission was impaired with age, and microglial depletion was associated with decreased total synaptic transmission in young and aged rats. A robust decline in N-methyl-d-aspartate-receptor-mediated synaptic transmission arose in young depleted rats specifically. Microglial replenishment normalized depletion-induced synaptic function to control levels; however, recovery of aged animals did not mirror young. Microglial depletion was associated with decreased context-object discrimination memory in both age groups, which recovered with microglial repopulation. Aged rats displayed impaired contextual and cued fear memory, and microglial replenishment did not recover their memory to the level of young. The current study indicates that cognitive function and synaptic transmission benefit from the support of aged microglia and are hindered by removal of these cells. Replenishment of microglia in aging did not ameliorate age-related cognitive impairments or senescent synaptic function.


Assuntos
Hipocampo , Microglia , Envelhecimento , Animais , Cognição , Citocinas/metabolismo , Hipocampo/metabolismo , Microglia/metabolismo , Ratos
4.
J Neurosci ; 39(4): 612-626, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30504275

RESUMO

Histone deacetylase (HDAC) inhibitors may have therapeutic utility in multiple neurological and psychiatric disorders, but the underlying mechanisms remain unclear. Here, we identify BRD4, a BET bromodomain reader of acetyl-lysine histones, as an essential component involved in potentiated expression of brain-derived neurotrophic factor (BDNF) and memory following HDAC inhibition. In in vitro studies, we reveal that pharmacological inhibition of BRD4 reversed the increase in BDNF mRNA induced by the class I/IIb HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). Knock-down of HDAC2 and HDAC3, but not other HDACs, increased BDNF mRNA expression, whereas knock-down of BRD4 blocked these effects. Using dCas9-BRD4, locus-specific targeting of BRD4 to the BDNF promoter increased BDNF mRNA. In additional studies, RGFP966, a pharmacological inhibitor of HDAC3, elevated BDNF expression and BRD4 binding to the BDNF promoter, effects that were abrogated by JQ1 (an inhibitor of BRD4). Examining known epigenetic targets of BRD4 and HDAC3, we show that H4K5ac and H4K8ac modifications and H4K5ac enrichment at the BDNF promoter were elevated following RGFP966 treatment. In electrophysiological studies, JQ1 reversed RGFP966-induced enhancement of LTP in hippocampal slice preparations. Last, in behavioral studies, RGFP966 increased subthreshold novel object recognition memory and cocaine place preference in male C57BL/6 mice, effects that were reversed by cotreatment with JQ1. Together, these data reveal that BRD4 plays a key role in HDAC3 inhibitor-induced potentiation of BDNF expression, neuroplasticity, and memory.SIGNIFICANCE STATEMENT Some histone deacetylase (HDAC) inhibitors are known to have neuroprotective and cognition-enhancing properties, but the underlying mechanisms have yet to be fully elucidated. In the current study, we reveal that BRD4, an epigenetic reader of histone acetylation marks, is necessary for enhancing brain-derived neurotrophic factor (BDNF) expression and improved memory following HDAC inhibition. Therefore, by identifying novel epigenetic regulators of BDNF expression, these data may lead to new therapeutic targets for the treatment of neuropsychiatric disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Inibidores de Histona Desacetilases/farmacologia , Memória/efeitos dos fármacos , Acrilamidas/farmacologia , Animais , Azepinas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Epigênese Genética , Técnicas de Silenciamento de Genes , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Fenilenodiaminas/farmacologia , Ratos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Triazóis/farmacologia , Vorinostat/farmacologia
5.
Glia ; 68(11): 2228-2245, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32275335

RESUMO

During aging humans lose midbrain dopamine neurons, but not all dopamine regions exhibit vulnerability to neurodegeneration. Microglia maintain tissue homeostasis and neuronal support, but microglia become senescent and likely lose some of their functional abilities. Since aging is the greatest risk factor for Parkinson's disease, we hypothesized that aging-related changes in microglia and neurons occur in the vulnerable substantia nigra pars compacta (SNc) but not the ventral tegmental area (VTA). We conducted stereological analyses to enumerate microglia and dopaminergic neurons in the SNc and VTA of 1-, 6-, 9-, 18-, and 24-month-old C57BL/J6 mice using sections double-stained with tyrosine hydroxylase (TH) and Iba1. Both brain regions show an increase in microglia with aging, whereas numbers of TH+ cells show no significant change after 9 months of age in SNc and 6 months in VTA. Morphometric analyses reveal reduced microglial complexity and projection area while cell body size increases with aging. Contact sites between microglia and dopaminergic neurons in both regions increase with aging, suggesting increased microglial support/surveillance of dopamine neurons. To assess neurotrophin expression in dopaminergic neurons, BDNF and TH mRNA were quantified. Results show that the ratio of BDNF to TH decreases in the SNc, but not the VTA. Gait analysis indicates subtle, aging-dependent changes in gait indices. In conclusion, increases in microglial cell number, ratio of microglia to dopamine neurons, and contact sites suggest that innate biological mechanisms compensate for the aging-dependent decline in microglia morphological complexity (senescence) to ensure continued neuronal support in the SNc and VTA.


Assuntos
Microglia , Substância Negra , Área Tegmentar Ventral , Animais , Fator Neurotrófico Derivado do Encéfalo , Neurônios Dopaminérgicos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
6.
Mol Pain ; 16: 1744806920966902, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33073674

RESUMO

Our study aimed to identify differentially methylated CpGs/regions and their enriched genomic pathways associated with underlying chronic musculoskeletal pain in older individuals. We recruited cognitively healthy older adults with (n = 20) and without (n = 9) self-reported musculoskeletal pain and collected DNA from peripheral blood that was analyzed using MethylationEPIC arrays. We identified 31,739 hypermethylated CpG and 10,811 hypomethylated CpG probes (ps ≤ 0.05). All CpG probes were clustered into 5966 regions, among which 600 regions were differentially methylated at p ≤ 0.05 level, including 294 hypermethylated regions and 306 hypomethylated regions (differentially methylated regions). Ingenuity pathway enrichment analysis revealed that the pain-related differentially methylated regions were enriched across multiple pathways. The top 10 canonical pathways were linked to cellular signaling processes related to immune responses (i.e. antigen presentation, programed cell death 1 receptor/PD-1 ligand 1, interleukin-4, OX40 signaling, T cell exhaustion, and apoptosis) and gamma-aminobutyric acid receptor signaling. Further, Weighted Gene Correlation Network Analysis revealed a comethylation network module in the pain group that was not preserved in the control group, where the hub gene was the cyclic adenosine monophosphate-dependent transcription factor ATF-2. Our preliminary findings provide new epigenetic insights into the role of aberrant immune signaling in musculoskeletal pain in older adults while further supporting involvement of dysfunctional GABAergic signaling mechanisms in chronic pain. Our findings need to be urgently replicated in larger cohorts as they may serve as a basis for developing and targeting future interventions.


Assuntos
Dor Crônica/sangue , Metilação de DNA , Dor Musculoesquelética/sangue , Transdução de Sinais/genética , Fator 2 Ativador da Transcrição/genética , Fator 2 Ativador da Transcrição/metabolismo , Idoso , Apresentação de Antígeno/genética , Apoptose/genética , Dor Crônica/genética , Dor Crônica/imunologia , Ilhas de CpG , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-4/genética , Interleucina-4/metabolismo , Masculino , Dor Musculoesquelética/genética , Dor Musculoesquelética/imunologia , Ligante OX40/genética , Ligante OX40/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Receptores de GABA/metabolismo , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
7.
Crit Care Med ; 47(11): e919-e929, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31389840

RESUMO

OBJECTIVES: Our goal was to "reverse translate" the human response to surgical sepsis into the mouse by modifying a widely adopted murine intra-abdominal sepsis model to engender a phenotype that conforms to current sepsis definitions and follows the most recent expert recommendations for animal preclinical sepsis research. Furthermore, we aimed to create a model that allows the study of aging on the long-term host response to sepsis. DESIGN: Experimental study. SETTING: Research laboratory. SUBJECTS: Young (3-5 mo) and old (18-22 mo) C57BL/6j mice. INTERVENTIONS: Mice received no intervention or were subjected to polymicrobial sepsis with cecal ligation and puncture followed by fluid resuscitation, analgesia, and antibiotics. Subsets of mice received daily chronic stress after cecal ligation and puncture for 14 days. Additionally, modifications were made to ensure that "Minimum Quality Threshold in Pre-Clinical Sepsis Studies" recommendations were followed. MEASUREMENTS AND MAIN RESULTS: Old mice exhibited increased mortality following both cecal ligation and puncture and cecal ligation and puncture + daily chronic stress when compared with young mice. Old mice developed marked hepatic and/or renal dysfunction, supported by elevations in plasma aspartate aminotransferase, blood urea nitrogen, and creatinine, 8 and 24 hours following cecal ligation and puncture. Similar to human sepsis, old mice demonstrated low-grade systemic inflammation 14 days after cecal ligation and puncture + daily chronic stress and evidence of immunosuppression, as determined by increased serum concentrations of multiple pro- and anti-inflammatory cytokines and chemokines when compared with young septic mice. In addition, old mice demonstrated expansion of myeloid-derived suppressor cell populations and sustained weight loss following cecal ligation and puncture + daily chronic stress, again similar to the human condition. CONCLUSIONS: The results indicate that this murine cecal ligation and puncture + daily chronic stress model of surgical sepsis in old mice adhered to current Minimum Quality Threshold in Pre-Clinical Sepsis Studies guidelines and met Sepsis-3 criteria. In addition, it effectively created a state of persistent inflammation, immunosuppression, and weight loss, thought to be a key aspect of chronic sepsis pathobiology and increasingly more prevalent after human sepsis.


Assuntos
Quimiocinas/sangue , Citocinas/sangue , Tolerância Imunológica/fisiologia , Insuficiência de Múltiplos Órgãos/patologia , Sepse/patologia , Redução de Peso/fisiologia , Fatores Etários , Animais , Ceco/cirurgia , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/mortalidade , Inflamação/patologia , Estimativa de Kaplan-Meier , Ligadura/efeitos adversos , Ligadura/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência de Múltiplos Órgãos/mortalidade , Complicações Pós-Operatórias/mortalidade , Complicações Pós-Operatórias/patologia , Distribuição Aleatória , Fatores de Risco , Sepse/mortalidade , Análise de Sobrevida
8.
Neurobiol Learn Mem ; 164: 107064, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31394200

RESUMO

The current review provides a historical perspective on the evolution of hypothesized mechanisms for senescent neurophysiology, focused on the CA1 region of the hippocampus, and the relationship of senescent neurophysiology to impaired hippocampal-dependent memory. Senescent neurophysiology involves processes linked to calcium (Ca2+) signaling including an increase in the Ca2+-dependent afterhyperpolarization (AHP), decreasing pyramidal cell excitability, hyporesponsiveness of N-methyl-D-aspartate (NMDA) receptor function, and a shift in Ca2+-dependent synaptic plasticity. Dysregulation of intracellular Ca2+ and downstream signaling of kinase and phosphatase activity lies at the core of senescent neurophysiology. Ca2+-dysregulation involves a decrease in Ca2+ influx through NMDA receptors and an increase release of Ca2+ from internal Ca2+ stores. Recent work has identified changes in redox signaling, arising in middle-age, as an initiating factor for senescent neurophysiology. The shift in redox state links processes of aging, oxidative stress and inflammation, with functional changes in mechanisms required for episodic memory. The link between age-related changes in Ca2+ signaling, epigenetics and gene expression is an exciting area of research. Pharmacological and behavioral intervention, initiated in middle-age, can promote memory function by initiating transcription of neuroprotective genes and rejuvenating neurophysiology. However, with more advanced age, or under conditions of neurodegenerative disease, epigenetic changes may weaken the link between environmental influences and transcription, decreasing resilience of memory function.


Assuntos
Envelhecimento/fisiologia , Região CA1 Hipocampal/fisiologia , Sinalização do Cálcio , Células Piramidais/fisiologia , Animais , Núcleo Celular/fisiologia , Epigênese Genética , Potenciais Pós-Sinápticos Excitadores , Humanos , Potenciais da Membrana , Plasticidade Neuronal , Receptores de N-Metil-D-Aspartato/fisiologia
9.
Neurochem Res ; 44(1): 38-48, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30209673

RESUMO

Glutamate is the primary excitatory neurotransmitter in neurons and glia. N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainate receptors are major ionotropic glutamate receptors. Glutamatergic neurotransmission is strongly linked with Ca2+ homeostasis. Research has provided ample evidence that brain aging is associated with altered glutamatergic neurotransmission and Ca2+ dysregulation. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during senescence. The current review examines Ca2+ regulation with a focus on the NMDA receptors in the hippocampus. Integrating the knowledge of the complexity of age-related alterations in Ca2+ homeostasis and NMDA receptor-mediated glutamatergic neurotransmission will positively shape the development of highly effective therapeutics to treat brain disorders including cognitive impairment.


Assuntos
Hipocampo/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/fisiologia , Envelhecimento , Animais , Humanos , Neuroglia/metabolismo
10.
J Neurosci ; 35(9): 3966-77, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25740525

RESUMO

Young (3-6 months) and middle-age (10-14 months) rats were trained on the five-choice serial reaction time task. Attention and executive function deficits were apparent in middle-age animals observed as a decrease in choice accuracy, increase in omissions, and increased response latency. The behavioral differences were not due to alterations in sensorimotor function or a diminished motivational state. Electrophysiological characterization of synaptic transmission in slices from the mPFC indicated an age-related decrease in glutamatergic transmission. In particular, a robust decrease in N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic responses in the mPFC was correlated with several measures of attention. The decrease in NMDAR function was due in part to an altered redox state as bath application of the reducing agent, dithiothreitol, increased the NMDAR component of the synaptic response to a greater extent in middle-age animals. Together with previous work indicating that redox state mediates senescent physiology in the hippocampus, the results indicate that redox changes contribute to senescent synaptic function in vulnerable brain regions involved in age-related cognitive decline.


Assuntos
Envelhecimento/fisiologia , Atenção/fisiologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/fisiologia , Animais , Sinais (Psicologia) , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Oxirredução , Ratos , Ratos Endogâmicos F344 , Tempo de Reação/fisiologia , Aprendizagem Seriada/fisiologia
11.
J Neurosci ; 35(49): 16077-93, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26658861

RESUMO

A decline in estradiol (E2)-mediated cognitive benefits denotes a critical window for the therapeutic effects of E2, but the mechanism for closing of the critical window is unknown. We hypothesized that upregulating the expression of estrogen receptor α (ERα) or estrogen receptor ß (ERß) in the hippocampus of aged animals would restore the therapeutic potential of E2 treatments and rejuvenate E2-induced hippocampal plasticity. Female rats (15 months) were ovariectomized, and, 14 weeks later, adeno-associated viral vectors were used to express ERα, ERß, or green fluorescent protein (GFP) in the CA1 region of the dorsal hippocampus. Animals were subsequently treated for 5 weeks with cyclic injections of 17ß-estradiol-3-benzoate (EB, 10 µg) or oil vehicle. Spatial memory was examined 48 h after EB/oil treatment. EB treatment in the GFP (GFP + EB) and ERß (ERß + EB) groups failed to improve episodic spatial memory relative to oil-treated animals, indicating closing of the critical window. Expression of ERß failed to improve cognition and was associated with a modest learning impairment. Cognitive benefits were specific to animals expressing ERα that received EB treatment (ERα + EB), such that memory was improved relative to ERα + oil and GFP + EB. Similarly, ERα + EB animals exhibited enhanced NMDAR-mediated synaptic transmission compared with the ERα + oil and GFP + EB groups. This is the first demonstration that the window for E2-mediated benefits on cognition and hippocampal E2 responsiveness can be reinstated by increased expression of ERα. SIGNIFICANCE STATEMENT: Estradiol is neuroprotective, promotes synaptic plasticity in the hippocampus, and protects against cognitive decline associated with aging and neurodegenerative diseases. However, animal models and clinical studies indicate a critical window for the therapeutic treatment such that the beneficial effects are lost with advanced age and/or with extended hormone deprivation. We used gene therapy to upregulate expression of the estrogen receptors ERα and ERß and demonstrate that the window for estradiol's beneficial effects on memory and hippocampal synaptic function can be reinstated by enhancing the expression of ERα. Our findings suggest that the activity of ERα controls the therapeutic window by regulating synaptic plasticity mechanisms involved in memory.


Assuntos
Estradiol/análogos & derivados , Deficiências da Aprendizagem/tratamento farmacológico , Memória Espacial/efeitos dos fármacos , Animais , Anticoncepcionais/farmacologia , Estradiol/farmacologia , Estradiol/uso terapêutico , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Hipocampo/metabolismo , Hipocampo/fisiologia , Humanos , Deficiências da Aprendizagem/etiologia , Aprendizagem em Labirinto/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Ovariectomia/efeitos adversos , Quinoxalinas/farmacologia , Ratos , Ratos Endogâmicos F344 , Memória Espacial/fisiologia , Fatores de Tempo , Transdução Genética
12.
Neural Plast ; 2016: 2726745, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26839712

RESUMO

Interactions between GluR2 and N-ethylmaleimide-sensitive factor (NSF) mediate AMPA receptors trafficking. This might be linked with molecular mechanisms related with memory formation. Previous research has shown basolateral amygdala (BLA) dependent activity changes in the perirhinal cortex (PRh) during the formation of taste memory. In the present experiments we investigate both the behavioral performance and the expression profile of NSF and GluR2 genes in several brain areas, including PRh, BLA, and hippocampus. Twenty-one naïve male Wistar rats were exposed to a saccharin solution (0.4%) during the first (novel), the second (Familiar I), and the sixth presentation (Familiar II). Total RNA was extracted and gene expression was measured by quantitative PCR (qPCR) using TaqMan gene expression assays. In addition the expression of the synaptic plasticity related immediate early genes, Homer 1 and Narp, was also assessed. We have found increased expression of NSF gene in BLA and PRh in Group Familiar I in comparison with Familiar II. No changes in the expression of GluR2, Homer 1, and Narp genes were found. The results suggest the relevance of a potential network in the temporal lobe for taste recognition memory and open new possibilities for understanding the molecular mechanisms mediating the impact of sensory experience on brain circuit function.


Assuntos
Tonsila do Cerebelo/metabolismo , Aprendizagem da Esquiva/fisiologia , Habituação Psicofisiológica/fisiologia , Hipocampo/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Paladar/fisiologia , Animais , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Arcabouço Homer , Masculino , Proteínas Sensíveis a N-Etilmaleimida/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Wistar , Receptores de AMPA/genética , Receptores de AMPA/metabolismo
13.
Hippocampus ; 25(12): 1556-66, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25980457

RESUMO

Estradiol rapidly modulates hippocampal synaptic plasticity and synaptic transmission; however, the contribution of the various estrogen receptors to rapid changes in synaptic function is unclear. This study examined the effect of estrogen receptor selective agonists on hippocampal synaptic transmission in slices obtained from 3-5-month-old wild type (WT), estrogen receptor alpha (ERαKO), and beta (ERßKO) knockout female ovariectomized mice. Hippocampal slices were prepared 10-16 days following ovariectomy and extracellular excitatory postsynaptic field potentials were recorded from CA3-CA1 synaptic contacts before and following application of 17ß-estradiol-3-benzoate (EB, 100 pM), the G-protein estrogen receptor 1 (GPER1) agonist G1 (100 nM), the ERα selective agonist propyl pyrazole triol (PPT, 100 nM), or the ERß selective agonist diarylpropionitrile (DPN, 1 µM). Across all groups, EB and G1 increased the synaptic response to a similar extent. Furthermore, prior G1 application occluded the EB-mediated enhancement of the synaptic response and the GPER1 antagonist, G15 (100 nM), inhibited the enhancement of the synaptic response induced by EB application. We confirmed that the ERα and ERß selective agonists (PPT and DPN) had effects on synaptic responses specific to animals that expressed the relevant receptor; however, PPT and DPN produced only a small increase in synaptic transmission relative to EB or the GPER1 agonist. We demonstrate that the increase in synaptic transmission is blocked by inhibition of extracellular signal-regulated kinase (ERK) activity. Furthermore, EB was able to increase ERK activity regardless of genotype. These results suggest that ERK activation and enhancement of synaptic transmission by EB involves multiple estrogen receptor subtypes.


Assuntos
Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Estrogênios/farmacologia , Hipocampo/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Antagonistas do Receptor de Estrogênio/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/genética , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Hipocampo/fisiologia , Camundongos Knockout , Nitrilas/farmacologia , Ovariectomia , Fenóis/farmacologia , Propionatos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Técnicas de Cultura de Tecidos
14.
Neurobiol Learn Mem ; 125: 36-46, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26234588

RESUMO

A decrease in N-methyl-D-aspartate receptor (NMDAR) function is associated with age-related cognitive impairments. However, NMDAR antagonists are prescribed for cognitive decline associated with age-related neurodegenerative disease, raising questions as to the role of NMDAR activity in cognitive function during aging. The current studies examined effects of NMDAR blockade on cognitive task that are sensitive to aging. Young and middle-age rats were trained on the five-choice serial reaction time task (5-CSRTT) and challenged with MK-801 (0.025, 0.05, and 0.1mg/kg or vehicle). Attention deficits were apparent in middle-age and performance of young and middle-age rats was enhanced for low doses of MK-801 (0.025 and 0.05). The beneficial effects on attention were reversed by the highest dose of MK-801. Older animals exhibited a delay-dependent impairment of episodic spatial memory examined on a delayed-matching to place water maze task. Similarly, a low dose of MK-801 (0.05mg/kg) impaired performance with increasing delay and aged animals were more susceptible to disruption by NMDAR blockade. Despite MK-801 impairment of episodic spatial memory, MK-801 had minimal effects on spatial reference memory. Our results confirm that NMDARs contribute to rapidly acquired and flexible spatial memory and support the idea that a decline in NMDAR function contributes to the age-related impairments in cognition.


Assuntos
Envelhecimento/fisiologia , Atenção/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Memória Episódica , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Memória Espacial/efeitos dos fármacos , Animais , Atenção/fisiologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Cognição/efeitos dos fármacos , Cognição/fisiologia , Masculino , Ratos , Ratos Endogâmicos F344 , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Memória Espacial/fisiologia
15.
Brain Behav Immun ; 49: 216-32, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26093306

RESUMO

We trained and tested young (6-8months; n=13), middle-aged (12-14months; n=41), and aged (22-24months; n=24) male Fischer 344 rats in a rapid acquisition water maze task and then quantified 27 stress hormones, cytokines and chemokines in their serum, hippocampi and frontal cortices using bead assay kits and xMAP technology. Middle-aged and aged rats learned the location of the hidden platform over training trials more slowly than their young counterparts. After training, young rats outperformed middle-aged and aged rats on both immediate and 24h retention probe trials and about half of the middle-aged and aged (aging) rats exhibited impaired performances when tested on the retention probe trial 24h later. The concentrations of many serum, hippocampal and cortical analytes changed with age often in networks that may represent age-sensitive signaling pathways and the concentrations of some of these analytes correlated with water maze learning and/or memory scores. Serum GRO/KC and RANTES levels, hippocampal GM-CSF levels and cortical IL-9 and RANTES levels were significantly higher in rats categorized as memory-impaired versus elite agers based upon their 24h probe trial performances. Our data add to the emerging picture of how age-related changes in immune and neuroimmune system signaling impacts cognition.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/psicologia , Quimiocinas/metabolismo , Cognição/fisiologia , Citocinas/metabolismo , Hormônios/metabolismo , Hormônio Adrenocorticotrópico/sangue , Hormônio Adrenocorticotrópico/metabolismo , Fatores Etários , Animais , Córtex Cerebral/metabolismo , Quimiocinas/sangue , Corticosterona/sangue , Corticosterona/metabolismo , Citocinas/sangue , Hipocampo/metabolismo , Hormônios/sangue , Masculino , Melatonina/sangue , Melatonina/metabolismo , Ratos , Ratos Endogâmicos F344 , Aprendizagem Espacial/fisiologia
16.
J Neurosci ; 33(40): 15710-5, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24089479

RESUMO

NMDA receptors (NMDARs) play a critical role in learning and memory; however, there is a lack of evidence for a direct relationship between a well characterized decline in NMDAR function and impaired cognition during aging. The present study was designed to test the idea that a redox-mediated decrease in the NMDAR component of synaptic transmission during aging is related to a specific cognitive phenotype: impaired memory for rapidly acquired novel spatial information. Young and middle-aged male F344 rats were provided 1 d of training on the spatial version of the water maze, and retention was examined 24 h later. The performance of young rats was used as a criterion for classifying middle-aged rats as impaired and unimpaired on the task. Subsequent construction of CA3-CA1 synaptic input-output curves in hippocampal slices confirmed an age-related decrease in synaptic responses, including the NMDAR component of synaptic transmission. Examination of synaptic transmission according to behavioral classification revealed that animals classified as impaired exhibited a decrease in the total and the NMDAR component of the synaptic response relative to unimpaired animals. Furthermore, bath application of the reducing agent dithiothreitol increased the NMDAR component of the synaptic response to a greater extent in impaired animals relative to unimpaired and young rats. These results provide evidence for a link between the redox-mediated decline in NMDAR function and emergence of an age-related cognitive phenotype, impairment in the rapid acquisition and retention of novel spatial information.


Assuntos
Envelhecimento/metabolismo , Cognição/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Aprendizagem em Labirinto/fisiologia , Plasticidade Neuronal/fisiologia , Oxirredução , Ratos , Ratos Endogâmicos F344 , Transmissão Sináptica/fisiologia
17.
J Neurosci ; 33(6): 2671-83, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23392694

RESUMO

The expression of the ERα and ERß estrogen receptors in the hippocampus may be important in the etiology of age-related cognitive decline. To examine the role of ERα and ERß in regulating transcription and learning, ovariectomized wild-type (WT) and ERα and ERß knockout (KO) mice were used. Hippocampal gene transcription in young ERαKO mice was similar to WT mice 6 h after a single estradiol treatment. In middle-age ERαKO mice, hormone deprivation was associated with a decrease in the expression of select genes associated with the blood-brain barrier; cyclic estradiol treatment increased transcription of these select genes and improved learning in these mice. In contrast to ERαKO mice, ERßKO mice exhibited a basal hippocampal gene profile similar to WT mice treated with estradiol and, in the absence of estradiol treatment, young and middle-age ERßKO mice exhibited preserved learning on the water maze. The preserved memory performance of middle-age ERßKO mice could be reversed by lentiviral delivery of ERß to the hippocampus. These results suggest that one function of ERß is to regulate ERα-mediated transcription in the hippocampus. This model is supported by our observations that knockout of ERß under conditions of low estradiol allowed ERα-mediated transcription. As estradiol levels increased in the absence of ERα, we observed that other mechanisms, likely including ERß, regulated transcription and maintained hippocampal-dependent memory. Thus, our results indicate that ERα and ERß interact with hormone levels to regulate transcription involved in maintaining hippocampal function during aging.


Assuntos
Envelhecimento/fisiologia , Receptor alfa de Estrogênio/fisiologia , Receptor beta de Estrogênio/fisiologia , Hipocampo/fisiologia , Animais , Feminino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout
18.
Hippocampus ; 24(4): 466-75, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24390964

RESUMO

The susceptibility, but not the magnitude, of long-term depression (LTD) induced by hippocampal CA3-CA1 synaptic activity (synaptic-LTD) increases with advanced age. In contrast, the magnitude of LTD induced by pharmacological activation of CA3-CA1 group I metabotropic glutamate receptors (mGluRs) increases during aging. This study examined the signaling pathways involved in induction of LTD and the interaction between paired-pulse low frequency stimulation-induced synaptic-LTD and group I mGluR selective agonist, (RS)-3,5-dihydroxyphenylglycine (DHPG, 100 µM)-induced DHPG-LTD in hippocampal slices obtained from aged (22-24 months) male Fischer 344 rats. Prior induction of synaptic-LTD did not affect induction of DHPG-LTD; however, prior induction of the DHPG-LTD occluded synaptic-LTD suggesting that expression of DHPG-LTD may incorporate synaptic-LTD mechanisms. Application of individual antagonist for the group I mGluR (AIDA), the N-methyl-d-aspartate receptor (NMDAR) (AP-5), or L-type voltage-dependent Ca(2+) channel (VDCC) (nifedipine) failed to block synaptic-LTD and any two antagonists severely impaired synaptic-LTD induction, indicating that activation of any two mechanisms is sufficient to induce synaptic-LTD in aged animals. For DHPG-LTD, AIDA blocked DHPG-LTD and individually applied NMDAR or VDCC attenuated but did not block DHPG-LTD, indicating that the magnitude of DHPG-LTD depends on all three mechanisms.


Assuntos
Envelhecimento , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Glicina/análogos & derivados , Depressão Sináptica de Longo Prazo , Resorcinóis/farmacologia , Sinapses/fisiologia , Envelhecimento/efeitos dos fármacos , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glicina/farmacologia , Técnicas In Vitro , Indanos/farmacologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Nifedipino/farmacologia , Ratos , Ratos Endogâmicos F344 , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/efeitos dos fármacos
19.
Front Aging Neurosci ; 16: 1384554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38813533

RESUMO

There are sex differences in vulnerability and resilience to the stressors of aging and subsequent age-related cognitive decline. Cellular senescence occurs as a response to damaging or stress-inducing stimuli. The response includes a state of irreversible growth arrest, the development of a senescence-associated secretory phenotype, and the release of pro-inflammatory cytokines associated with aging and age-related diseases. Senolytics are compounds designed to eliminate senescent cells. Our recent work indicates that senolytic treatment preserves cognitive function in aging male F344 rats. The current study examined the effect of senolytic treatment on cognitive function in aging female rats. Female F344 rats (12 months) were treated with dasatinib (1.2 mg/kg) + quercetin (12 mg/kg) or ABT-263 (12 mg/kg) or vehicle for 7 months. Examination of the estrus cycle indicated that females had undergone estropause during treatment. Senolytic treatment may have increased sex differences in behavioral stress responsivity, particularly for the initial training on the cued version of the watermaze. However, pre-training on the cue task reduced stress responsivity for subsequent spatial training and all groups learned the spatial discrimination. In contrast to preserved memory observed in senolytic-treated males, all older females exhibited impaired episodic memory relative to young (6-month) females. We suggest that the senolytic treatment may not have been able to compensate for the loss of estradiol, which can act on aging mechanisms for anxiety and memory independent of cellular senescence.

20.
Aging Cell ; 23(2): e14037, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38225896

RESUMO

Doxorubicin (Dox), a widely used treatment for cancer, can result in chemotherapy-induced cognitive impairments (chemobrain). Chemobrain is associated with inflammation and oxidative stress similar to aging. As such, Dox treatment has also been used as a model of aging. However, it is unclear if Dox induces brain changes similar to that observed during aging since Dox does not readily enter the brain. Rather, the mechanism for chemobrain likely involves the induction of peripheral cellular senescence and the release of senescence-associated secretory phenotype (SASP) factors and these SASP factors can enter the brain to disrupt cognition. We examined the effect of Dox on peripheral and brain markers of aging and cognition. In addition, we employed the senolytic, ABT-263, which also has limited access to the brain. The results indicate that plasma SASP factors enter the brain, activating microglia, increasing oxidative stress, and altering gene transcription. In turn, the synaptic function required for memory was reduced in response to altered redox signaling. ABT-263 prevented or limited most of the Dox-induced effects. The results emphasize a link between cognitive decline and the release of SASP factors from peripheral senescent cells and indicate some differences as well as similarities between advanced age and Dox treatment.


Assuntos
Comprometimento Cognitivo Relacionado à Quimioterapia , Sulfonamidas , Humanos , Senoterapia , Doxorrubicina/efeitos adversos , Compostos de Anilina , Senescência Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA