Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ambio ; 43(2): 207-17, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23729296

RESUMO

We examined long-term data on water chemistry of Lake Rachelsee (Germany) following the changes in acidic depositions in central Europe since 1980s. Despite gradual chemical recovery of Rachelsee, its biological recovery was delayed. In 1999, lake recovery was abruptly reversed by a coincident forest die-back, which resulted in elevated terrestrial export of nitrate and ionic aluminum lasting ~5 years. This re-acidification episode provided unique opportunity to study plankton recovery in the rapidly recovering lake water after the abrupt decline in nitrate leaching from the catchment. There were sudden changes both in lake water chemistry and in plankton biomass structure, such as decreased bacterial filaments, increased phytoplankton biomass, and rotifer abundance. The shift from dominance of heterotrophic to autotrophic organisms suggested their substantial release from severe phosphorus stress. Such a rapid change in plankton structure in a lake recovering from acidity has, to the best of our knowledge, not been previously documented.


Assuntos
Chuva Ácida , Ecossistema , Lagos/química , Plâncton , Estresse Fisiológico , Alemanha , Concentração de Íons de Hidrogênio , Lagos/parasitologia
2.
Sci Total Environ ; 310(1-3): 73-85, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12812732

RESUMO

This paper evaluates long-term changes in the atmospheric depositions of S and N compounds, lake water quality, and biodiversity at eight glacial lakes in the Bohemian Forest over the past 130 years. This time interval covers (i) the 'background' pre-acidification status of the lakes, (ii) a period of changes in the communities that can be partly explained by introduction of fish, (iii) a period of strong lake acidification with its adverse impacts on the communities, (iv) the lake reversal from acidity, which includes the recent status of the lakes. The lake water chemistry has followed-with a characteristic hysteresis-both the sharp increase and decline in the deposition trends of strong anions. Remarkable changes in biota have mirrored the changing water quality. Fish became extinct and most species of zooplankton (Crustacea) and benthos (Ephemeroptera and Plecoptera) retreated due to the lake water acidification. Independent of ongoing chemical reversal, microorganisms remain dominant in the recent plankton biomass as well as in controlling the pelagic food webs. The first signs of the forthcoming biological recovery have already been evidenced in some lakes, such as the population of Ceriodaphnia quadrangula (Cladocera) returning into the pelagial of one lake or the increase in both phytoplankton biomass and rotifer numbers in another lake.


Assuntos
Chuva Ácida , Cadeia Alimentar , Árvores , Poluentes da Água/história , Animais , Biomassa , Cladocera , Monitoramento Ambiental/história , Europa (Continente) , Peixes , História do Século XIX , História do Século XX , Insetos , Dinâmica Populacional , Rotíferos , Zooplâncton
3.
Environ Pollut ; 186: 115-25, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24370669

RESUMO

The WHAM-FTOX model quantifies the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (FTOX), a linear combination of the products of organism-bound cation and a toxic potency coefficient for each cation. We describe the application of the model to predict an observable ecological field variable, species richness of pelagic lake crustacean zooplankton, studied with respect to either acidification or the impacts of metals from smelters. The fitted results give toxic potencies increasing in the order H(+) < Al < Cu < Zn < Ni. In general, observed species richness is lower than predicted, but in some instances agreement is close, and is rarely higher than predictions. The model predicts recovery in agreement with observations for three regions, namely Sudbury (Canada), Bohemian Forest (Czech Republic) and a subset of lakes across Norway, but fails to predict observed recovery from acidification in Adirondack lakes (USA).


Assuntos
Monitoramento Ambiental/métodos , Lagos/química , Metais/toxicidade , Modelos Químicos , Poluentes Químicos da Água/toxicidade , Zooplâncton/efeitos dos fármacos , Animais , Canadá , Crustáceos/classificação , Crustáceos/efeitos dos fármacos , Crustáceos/crescimento & desenvolvimento , República Tcheca , Noruega , Prótons , Zooplâncton/classificação , Zooplâncton/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA