Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Environ Sci Technol ; 56(2): 974-983, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34961317

RESUMO

Firefighter turnout gear is essential for reducing occupational exposure to hazardous chemicals during training and fire events. Per-and polyfluoroalkyl substances (PFASs) are observed in firefighter serum, and possible occupational sources include the air and dust of fires, aqueous film-forming foam, and turnout gear. Limited data exist for nonvolatile and volatile PFASs on firefighter turnout gear and the disposition of fluorine on the individual layers of turnout gear. Further implications for exposure to fluorine on turnout gear are not well understood. Three unused turnout garments purchased in 2019 and one purchased in 2008, were analyzed for 50 nonvolatile and 15 volatile PFASs by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-qTOF-MS) and gas chromatography-mass spectrometry (GC-MS), respectively. Particle-induced gamma ray emission (PIGE), a surface technique, and instrumental neutron activation analysis (INAA), a bulk technique, were used to measure total fluorine. Bulk characterization of the layers by pyrolysis-GC/MS (py-GC/MS) was used to differentiate fluoropolymer (e.g., PTFE) films from textile layers finished with side-chain polymers. The outer layer, moisture barrier, and thermal layers of the turnout gear all yielded measured concentrations of volatile PFASs that exceeded nonvolatile PFAS concentrations, but the summed molar concentrations made up only a small fraction of total fluorine (0.0016-6.7%). Moisture barrier layers comprised a PTFE film, as determined by py-GC-MS, and gave the highest individual nonvolatile (0.159 mg F/kg) and volatile PFAS (20.7 mg F/kg) as well as total fluorine (122,000 mg F/kg) concentrations. Outer and thermal layers comprised aromatic polyamide-based fibers (aramid) treated with side-chain fluoropolymers and had lower levels of individual nonvolatile and volatile PFASs. Equal concentrations of total fluorine by both PIGE and INAA on the outer and thermal layers is consistent with treatment with a side-chain fluoropolymer coating. New turnout gear should be examined as a potential source of firefighter occupational exposure to nonvolatile and volatile PFASs in future assessments.


Assuntos
Bombeiros , Fluorocarbonos , Exposição Ocupacional , Cromatografia Líquida , Flúor/análise , Fluorocarbonos/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Exposição Ocupacional/análise
2.
Anal Chem ; 93(35): 12041-12048, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34431672

RESUMO

Because of its speed, sensitivity, and ability to scrutinize individual species, mass spectrometry (MS) has become an essential tool in analytical strategies aimed at studying the degradation behavior of polyesters. MS analyses can be performed prior to the degradation event for structural characterization of initial substrates or after it has occurred to measure the decreasing size of products as a function of time. Here, we show that MS can also be usefully employed during the degradation process by online monitoring the chain solvolysis induced by reactive desorption electrospray ionization (DESI). Cleavage of ester bonds in random copolymers of lactic acid (LA) and glycolic acid (GA) was achieved by electrospraying methanol-containing NaOH onto the substrates. Experimental conditions were optimized to generate methanolysis products of high abundance so that mass spectra can be conveniently processed using Kendrick-based approaches. The same reactive-DESI performance was demonstrated for two sample preparations, solvent casting for soluble samples or pressed pellets for highly crystalline substrates, permitting to compare polymers with LA/GA ratios ranging from 100/0 to 5/95. Analysis of sample fractions collected by size exclusion chromatography showed that methanolysis occurs independently of the original chain size, so data recorded for poly(LA-co-GA) (PLAGA) copolymers with the average molecular weight ranging from 10 to 180 kDa could be safely compared. The average mass of methanolysis products was observed to decrease linearly (R2 = 0.9900) as the GA content increases in PLAGA substrates, consistent with the susceptibility of ester bonds toward solvolysis being higher in GA than in LA. Because DESI only explores the surface of solids, these data do not reflect bulk degradability of the copolymers but, instead, their relative degradability at the molecular level. Based on a "reactive-DESI degradability scale" such as that established here for PLAGA, the proposed method offers interesting perspectives to qualify intrinsic degradability of different polyesters and evaluate their erosion susceptibility or to determine the degradability of those polymers known to degrade via erosion only.


Assuntos
Glicóis , Espectrometria de Massas por Ionização por Electrospray , Peso Molecular , Poliésteres , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
3.
J Biol Chem ; 294(11): 4065-4078, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30655295

RESUMO

Glucuronoxylanases are endo-xylanases and members of the glycoside hydrolase family 30 subfamilies 7 (GH30-7) and 8 (GH30-8). Unlike for the well-studied GH30-8 enzymes, the structural and functional characteristics of GH30-7 enzymes remain poorly understood. Here, we report the catalytic properties and three-dimensional structure of GH30-7 xylanase B (Xyn30B) identified from the cellulolytic fungus Talaromyces cellulolyticus Xyn30B efficiently degraded glucuronoxylan to acidic xylooligosaccharides (XOSs), including an α-1,2-linked 4-O-methyl-d-glucuronosyl substituent (MeGlcA). Rapid analysis with negative-mode electrospray-ionization multistage MS (ESI(-)-MS n ) revealed that the structures of the acidic XOS products are the same as those of the hydrolysates (MeGlcA2Xyl n , n > 2) obtained with typical glucuronoxylanases. Acidic XOS products were further degraded by Xyn30B, releasing first xylobiose and then xylotetraose and xylohexaose as transglycosylation products. This hydrolase reaction was unique to Xyn30B, and the substrate was cleaved at the xylobiose unit from its nonreducing end, indicating that Xyn30B is a bifunctional enzyme possessing both endo-glucuronoxylanase and exo-xylobiohydrolase activities. The crystal structure of Xyn30B was determined as the first structure of a GH30-7 xylanase at 2.25 Å resolution, revealing that Xyn30B is composed of a pseudo-(α/ß)8-catalytic domain, lacking an α6 helix, and a small ß-rich domain. This structure and site-directed mutagenesis clarified that Arg46, conserved in GH30-7 glucuronoxylanases, is a critical residue for MeGlcA appendage-dependent xylan degradation. The structural comparison between Xyn30B and the GH30-8 enzymes suggests that Asn93 in the ß2-α2 loop is involved in xylobiohydrolase activity. In summary, our findings indicate that Xyn30B is a bifunctional endo- and exo-xylanase.


Assuntos
Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Talaromyces/enzimologia , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray
4.
Anal Chem ; 92(1): 628-633, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31801022

RESUMO

Technological advances in mass spectrometry (MS) toward more accurate and faster data acquisition result in highly informative but also more complex data sets. Especially the hyphenation of liquid chromatography (LC) and MS yields large data files containing a high amount of compound specific information. Using electrospray-ionization for compounds such as polymers enables highly sensitive detection, yet results in very complex spectra, containing multiply charged ions and adducts. Recent years have seen the development of novel or updated data mining strategies to reduce the MS spectra complexity and to ultimately simplify the data analysis workflow. Among other techniques, the Kendrick mass defect analysis, which graphically highlights compounds containing a given repeating unit, has been revitalized with applications in multiple fields of study, such as lipids and polymers. Especially for the latter, various data mining concepts have been developed, which extend regular Kendrick mass defect analysis to multiply charged ion series. The aim of this work is to collect and subsequently implement these concepts in one of the most popular open-source MS data mining software, i.e., MZmine 2, to make them rapidly available for different MS based measurement techniques and various vendor formats, with a special focus on hyphenated techniques such as LC-MS. In combination with already existing data mining modules, an example data set was processed and simplified, enabling an ever faster evaluation and polymer characterization.

5.
Anal Chem ; 92(11): 7399-7403, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32437129

RESUMO

Residual acid found in the desorption ionization using through-holes alumina membranes (DIUTHAME) induces a reproducible protonation/in-source dissociation of polymers made of ester, amide, or siloxane moieties during their surface-assisted laser desorption ionization (SALDI) mass analysis. Deposited on the DIUTHAME chips in solution (solvent-based) or in pure form by melting the polymer powder in situ (solvent-free), high-molecular-weight nylons, silicone, or functionalized celluloses among other polymers are instantly fingerprinted by laser DIUTHAME high-resolution mass spectrometry (MS) with specific patterns resembling their direct analysis in real-time (DART) single-stage or tandem mass spectra. Depending on the polymer, two main types of fingerprints are observed with either the protonated monomer or product ions revealing the nature of the repeating unit or its functionalization. This technique allows a rapid molecular analysis of industrial homopolymers regardless of their molecular weight and complementary to DART with simple or no sample preparation and also promisingly applicable for copolymers.

6.
Rapid Commun Mass Spectrom ; 34(5): e8597, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31520435

RESUMO

RATIONALE: Molecular characterization of industrial oligomeric products is performed using surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS), termed desorption ionization using a through-hole alumina membrane (DIUTHAME). This paper describes the unique feature of a DIUTHAME chip applying active SALDI, which generates specific types of fragments of polyglycol samples. METHODS: Polyethylene oxide (PEO) and PEO-based materials were subjected to SALDI-MS. The influence of the presence or absence of a cationization salt on the mass spectrum was investigated. The resulting mass spectra composed of fragment ions were compared with those obtained by collision-induced dissociation (CID)-MS/MS. The specific fragment ions generated using the DIUTHAME chip were further subjected to high-energy CID-MS/MS. RESULTS: The addition of a cationization salt resulted in SALDI mass spectra with fewer fragment peaks. The mass spectra obtained without adding the cationization salt were composed of many more fragment ions caused by in-source decay. The fragmentation pattern was similar to that seen with low-energy CID. The resulting fragment ions were formed by selective cleavage at the C-O bond. High-energy CID-MS/MS can be performed for the specific fragment ions generated by in-source decay fragmentation. CONCLUSIONS: Molecular characterization of PEO-based oligomers by SALDI-MS using the DIUTHAME chip was successfully demonstrated. The selective fragmentation and high-energy CID-MS/MS of the in-source decay fragments made it possible to provide more detailed structural information. This unique feature of DIUTHAME gives it potential for use in new molecular characterization techniques.

7.
Rapid Commun Mass Spectrom ; 34 Suppl 2: e8653, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31721332

RESUMO

RATIONALE: Matrix-assisted laser desorption/ionization mass spectrometric imaging (MSI) is considered to be a powerful tool for visualizing the spatial distribution of synthetic polymers. However, a conventional method extracting an image of a specific m/z value is not suitable for polymers, which have a mass distribution. It is necessary to develop the visualization method to show the spatial distribution of entire polymer series. METHODS: The mass peaks included in polymer series were specified from the average mass spectrum of the entire MSI measurement region by using Kendrick mass defect analysis. The images of those mass peaks were extracted and the number average molecular weight (Mn ), the weight average molecular weight (Mw ) and dispersity (D) were calculated for each pixel. Finally, the spatial distribution of the polymer series was summarized to images using Mn , Mw and D as indices. RESULTS: The effects of the methods were investigated by (i) polymers with different mass distributions and (ii) polymers with different repeat units and end-groups. In both cases, the spatial distribution of specific polymer series including several dozens to hundreds of mass peaks was summarized into three images related to Mn , Mw and D, which are familiar indices in polymer analysis. The results are able to provide an overview of the spatial variation of each polymer more intuitively. CONCLUSIONS: The visualization of Mn , Mw and D will help provide an overview of the spatial distribution of polymer series combined with ion intensity distribution made by conventional methods. It can be also applied to other mass spectrometric imaging methods such as desorption electrospray ionization (DESI) or time-of-flight secondary ion mass spectrometry (TOF-SIMS).

8.
Rapid Commun Mass Spectrom ; 34 Suppl 2: e8584, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31517411

RESUMO

RATIONALE: Electrospray ionization (ESI) favors the multiple charging of high molecular weight polymer samples and allows their high-resolution mass analysis in the low-mass range. It also induces the detection of numerous ion series at different charge states with different adducts complicating the interpretation of the mass spectrum which should be facilitated by an appropriate data processing. METHODS: An arsenal of tools based on the Kendrick mass defect (KMD) is proposed to process congested ESI high-resolution mass spectra of poly(propylene oxide) (PPO) samples. The combination of regular, charge-dependent, and resolution-enhanced KMD plots in addition to a "remainders" plot and a new three-dimensional plot offers unrivaled capabilities of filtering for any minor series among thousands of points. The sequential data processing is conducted using Kendo, a spreadsheet developed in-house for an advanced KMD analysis. RESULTS: The charge-state distribution is easily evaluated by counting the parallel lines in a regular KMD plot. A charge-dependent resolution-enhanced KMD plot instantly reveals the variation of adducted ions at a given charge state, helping the user to choose the best analytical conditions. Ion series at different charge states from PPO oligomers carrying different end-groups are also efficiently extracted using several combinations of KMD and remainders plots and assigned using a new simulator tool. CONCLUSIONS: The innovative combination of existing and new KMD-related plots, selection tools, and simulator all combined in a single spreadsheet dramatically facilitates the processing and interpretation of complex ESI mass spectral data. The presented tools may be extended to any other class of homo-, co- and terpolymers.

9.
Rapid Commun Mass Spectrom ; 34 Suppl 2: e8687, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31797453

RESUMO

RATIONALE: Direct analysis in real time mass spectrometry (DART-MS) provides qualitative information about additives and polymer composition. However, the observed mass spectra are dependent on sampling conditions, in particular the DART gas temperature. This report describes the combination of a heated sample stage with DART-MS for polymer characterization. METHODS: Industrial polymers with different compositions were examined by thermal desorption and pyrolysis (TDPy) DART. Samples were heated on disposable copper stages from ambient temperature to 600°C, and the evolved gases were introduced directly into a DART ion source through a glass tee. Time- and temperature-dependent mass spectra were acquired using a high-resolution time-of-flight mass spectrometer. Kendrick mass analysis was applied to the interpretation of complex mass spectra observed for fluorinated polymers. RESULTS: Positive-ion DART mass spectra of common polymers exhibited peak series differing by monomer masses, often accompanied by a peak corresponding to the protonated monomer. Even polymers that did not exhibit a clear series of peaks produced characteristic mass spectra. Positive-ion and negative-ion mass spectra were recorded for fluorinated polymers, with polytetrafluoroethylene (PTFE) producing only negative ions. Thermal desorption provided characteristic temperature profiles for volatile species such as polymer additives and polymer pyrolysis products. CONCLUSIONS: In comparison with direct analysis by positioning sample directly in the heated DART gas stream, TDPy DART provides a more versatile sampling method and provides thermal separation and profiling of polymer additives, intact short polymer chains, and pyrolysis fragments.

10.
Org Biomol Chem ; 18(11): 2063-2075, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32100777

RESUMO

Base-catalyzed, C-alkylation of potassium (K) enolates with styrenes (CAKES) has recently emerged as a highly practical and convenient method for elaboration or synthesis of pharmaceutically-relevant cores. K enolate-type precursors such as alkyl-substituted heterocycles (pyridines, pyrazines and thiophenes), ketones, imines, nitriles and amides undergo C-alkylation reactions with styrene in the presence of KOtBu or KHMDS. Surprisingly, no studies have probed the reaction mechanism beyond the likely initial formation of a K enolate. Herein, a synergistic approach of computational (DFT), kinetic and deuterium labelling studies rationalizes various experimental observations and supports a metal-ene-type reaction for amide CAKES. Moreover, our approach explains experimental observations in other reported C-alkylation reactions of other enolate-type precursors, thus implicating a general mechanism for CAKES.

11.
Org Biomol Chem ; 18(13): 2538, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32186572

RESUMO

Correction for 'Base-catalyzed C-alkylation of potassium enolates with styrenes via a metal-ene reaction: a mechanistic study' by Joshua P. Barham et al., Org. Biomol. Chem., 2020, DOI: 10.1039/c9ob02495f.

12.
Anal Chem ; 91(3): 2004-2012, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30582791

RESUMO

Resolution-enhanced Kendrick Mass Defect (KMD) analysis using the new concept of fractional base units (repeating unit R divided by integer X; R/ X as a mathematical moiety) is now a powerful data-processing tool to unravel complex mass spectra of polymers. It enhances regular KMD analysis using the chemical moiety, R, to compute mass defects with unprecedented separation of ion series differing by their isotopic or comonomeric contents, end-groups, or charge states in highly visual KMD plots. The value of the divisor, X, dictates the gain of separating power from the regular to the resolution-enhanced KMD plot, and its choice strongly affects the ease and speed of data interpretation. A simple tool to help select the best values of X depending on the users' needs is mandatory to rationalize the analysis and avoid a time-consuming trial-and-error methodology. We propose two graphical representations intuitively ranking the well-suited divisors for the appropriate separation of isotopes or co-oligomers for copolymeric mass-spectral data. Rankings are extended to any type of data set from homopolymeric blends to terpolymers by generalizing the formulas with three variables beyond the specific separation of isotopes. The RANK functions are now available in commercial or homemade spreadsheets (available upon request) to interactively select divisors and compute the associated KMD plots.

13.
Appl Environ Microbiol ; 85(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31492671

RESUMO

Glycoside hydrolase family 30 subfamily 7 (GH30-7) enzymes include various types of xylanases, such as glucuronoxylanase, endoxylanase, xylobiohydrolase, and reducing-end xylose-releasing exoxylanase. Here, we characterized the mode of action and gene expression of the GH30-7 endoxylanase from the cellulolytic fungus Talaromyces cellulolyticus (TcXyn30C). TcXyn30C has a modular structure consisting of a GH30-7 catalytic domain and a C-terminal cellulose binding module 1, whose cellulose-binding ability has been confirmed. Sequence alignment of GH30-7 xylanases exhibited that TcXyn30C has a conserved Phe residue at the position corresponding to a conserved Arg residue in GH30-7 glucuronoxylanases, which is required for the recognition of the 4-O-methyl-α-d-glucuronic acid (MeGlcA) substituent. TcXyn30C degraded both glucuronoxylan and arabinoxylan with similar kinetic constants and mainly produced linear xylooligosaccharides (XOSs) with 2 to 3 degrees of polymerization, in an endo manner. Notably, the hydrolysis of glucuronoxylan caused an accumulation of 22-(MeGlcA)-xylobiose (U4m2X). The production of this acidic XOS is likely to proceed via multistep reactions by putative glucuronoxylanase activity that produces 22-(MeGlcA)-XOSs (X n U4m2X, n ≥ 0) in the initial stages of the hydrolysis and by specific release of U4m2X from a mixture containing X n U4m2X. Our results suggest that the unique endoxylanase activity of TcXyn30C may be applicable to the production of linear and acidic XOSs. The gene xyn30C was located adjacent to the putative GH62 arabinofuranosidase gene (abf62C) in the T. cellulolyticus genome. The expression of both genes was induced by cellulose. The results suggest that TcXyn30C may be involved in xylan removal in the hydrolysis of lignocellulose by the T. cellulolyticus cellulolytic system.IMPORTANCE Xylooligosaccharides (XOSs), which are composed of xylose units with a ß-1,4 linkage, have recently gained interest as prebiotics in the food and feed industry. Apart from linear XOSs, branched XOSs decorated with a substituent such as methyl glucuronic acid and arabinose also have potential applications. Endoxylanase is a promising tool in producing XOSs from xylan. The structural variety of XOSs generated depends on the substrate specificity of the enzyme as well as the distribution of the substituents in xylan. Thus, the exploration of endoxylanases with novel specificities is expected to be useful in the provision of a series of XOSs. In this study, the endoxylanase TcXyn30C from Talaromyces cellulolyticus was characterized as a unique glycoside hydrolase belonging to the family GH30-7, which specifically releases 22-(4-O-methyl-α-d-glucuronosyl)-xylobiose from hardwood xylan. This study provides new insights into the production of linear and branched XOSs by GH30-7 endoxylanase.


Assuntos
Endo-1,4-beta-Xilanases/genética , Proteínas Fúngicas/genética , Talaromyces/enzimologia , Xilanos/metabolismo , Domínio Catalítico , Endo-1,4-beta-Xilanases/metabolismo , Proteínas Fúngicas/metabolismo , Glucuronatos/metabolismo , Hidrólise , Cinética , Oligossacarídeos/metabolismo , Especificidade por Substrato , Talaromyces/genética , Madeira/microbiologia , Xilose/metabolismo
14.
Appl Environ Microbiol ; 85(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31003983

RESUMO

In this study, we characterized the mode of action of reducing-end xylose-releasing exoxylanase (Rex), which belongs to the glycoside hydrolase family 30-7 (GH30-7). GH30-7 Rex, isolated from the cellulolytic fungus Talaromyces cellulolyticus (Xyn30A), exists as a dimer. The purified Xyn30A released xylose from linear xylooligosaccharides (XOSs) 3 to 6 xylose units in length with similar kinetic constants. Hydrolysis of branched, borohydride-reduced, and p-nitrophenyl XOSs clarified that Xyn30A possesses a Rex activity. 1H nuclear magnetic resonance (1H NMR) analysis of xylotriose hydrolysate indicated that Xyn30A degraded XOSs via a retaining mechanism and without recognizing an anomeric structure at the reducing end. Hydrolysis of xylan by Xyn30A revealed that the enzyme continuously liberated both xylose and two types of acidic XOSs: 22-(4-O-methyl-α-d-glucuronyl)-xylotriose (MeGlcA2Xyl3) and 22-(MeGlcA)-xylobiose (MeGlcA2Xyl2). These acidic products were also detected during hydrolysis using a mixture of MeGlcA2Xyl n (n = 2 to 14) as the substrate. This indicates that Xyn30A can release MeGlcA2Xyl n (n = 2 and 3) in an exo manner. Comparison of subsites in Xyn30A and GH30-7 glucuronoxylanase using homology modeling suggested that the binding of the reducing-end residue at subsite +2 was partially prevented by a Gln residue conserved in GH30-7 Rex; additionally, the Arg residue at subsite -2b, which is conserved in glucuronoxylanase, was not found in Xyn30A. Our results lead us to propose that GH30-7 Rex plays a complementary role in hydrolysis of xylan by fungal cellulolytic systems.IMPORTANCE Endo- and exo-type xylanases depolymerize xylan and play crucial roles in the assimilation of xylan in bacteria and fungi. Exoxylanases release xylose from the reducing or nonreducing ends of xylooligosaccharides; this is generated by the activity of endoxylanases. ß-Xylosidase, which hydrolyzes xylose residues on the nonreducing end of a substrate, is well studied. However, the function of reducing-end xylose-releasing exoxylanases (Rex), especially in fungal cellulolytic systems, remains unclear. This study revealed the mode of xylan hydrolysis by Rex from the cellulolytic fungus Talaromyces cellulolyticus (Xyn30A), which belongs to the glycoside hydrolase family 30-7 (GH30-7). A conserved residue related to Rex activity is found in the substrate-binding site of Xyn30A. These findings will enhance our understanding of the function of GH30-7 Rex in the cooperative hydrolysis of xylan by fungal enzymes.


Assuntos
Endo-1,4-beta-Xilanases/metabolismo , Proteínas Fúngicas/metabolismo , Talaromyces/enzimologia , Xilose/metabolismo , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Cinética , Especificidade por Substrato , Talaromyces/genética , Xilanos/metabolismo
15.
Anal Chem ; 90(21): 12854-12860, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30299081

RESUMO

A new approach to determining the repeat unit compositions of homopolymers is reported in which a mass defect graph is rotated to zero slope to give a graph identical to a Kendrick mass defect graph. Because the Kendrick mass defect (KMD) is directly related to the elemental composition of the base unit, the process can be reversed. A mass defect graph (fractional m/ z plotted against exact m/ z) of a homopolymer can be rotated until the slope of the data points is zero. This is equivalent to finding a new constant factor by which the measured exact masses would have to be multiplied to create a Kendrick mass defect graph with zero slope. The elemental composition of the repeat unit can be determined by matching the new factor against the calculated factors for candidate compositions. This approach provides some benefits over simply looking for pairs of peaks corresponding to oligomer units. The primary benefit is to assist in visualization of the data. Rotating the data points corresponding to polymer masses to zero slope makes it easier to visualize the polymer data, and it facilitates the graphical isolation of polymer masses from background interferences. The repeat unit composition is determined not from a single pair of peaks but from multiple data points, and systematic errors in mass assignment can be visualized as deviations from linearity. Resolution-enhanced KMD graphs can be constructed for the calculated repeat unit composition by using fractional base units.

16.
Anal Chem ; 90(4): 2404-2408, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29336551

RESUMO

Its recent adaptation to low-resolution mass spectra of polymers using fractional base units raises the question of the minimal resolution needed for a Kendrick mass defect (KMD) analysis. Intuiting an oligomeric resolution since the mass of a repeat unit is the sole value to be known, it is challenged by the relative failure of the KMD plots computed from an isotopically resolved matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrum to display clear alignments in the high mass range. Another procedure based on the remainders of Kendrick mass (RKMs) overcomes this pitfall with oligomers perfectly aligned in a new RKM plot. Despite a concomitant degradation of the resolving power and accuracy, with the example of MALDI-TOF/TOF mass spectra of a variety of homo- and copolymer ions, the RKM procedure still allows a rapid enumeration, assignment, and any further manipulation of all the product ion series in visual RKM plots. Successfully extended to the critical case of a MALDI mass spectrum recorded with a linear TOF analyzer allowing a bare oligomeric resolution, the RKM plot turns the distributions differing by their end-groups or adducted ion into clear horizontal lines. It eventually gives intuition its due by answering the original question: the minimal resolution required for a mass defect analysis can be as low as oligomeric with the appropriate formulas.

17.
Anal Chem ; 89(5): 2682-2686, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28194938

RESUMO

Beyond the high resolution/low mass range data traditionally used, a Kendrick mass defect analysis (KMD) using the new concept of fractional base units has been successfully conducted on low resolution/low mass range and high resolution/high mass range data for the first time. Relying on a mathematical framework to rationalize the effect of the fractional base units, the electrospray ionization single stage and multistage mass spectra of a poly(vinylpyrrolidone) recorded from a low resolution ion trap analyzer were turned into information-rich KMD plots using vinylpyrrolidone/112 and pyrrolidone/86 as base units. The distributions detected in the matrix assisted laser desorption ionization spiralTOF mass spectra of high molecular weight poly(ethylene oxide) and poly(caprolactone) were conveniently discriminated in KMD plots using (ethylene oxide)/45 and caprolactone/113 as base units with an unprecedented resolution at such a mass range. The high resolution KMD analysis using fractional base units opens new perspectives for the acquisition, visualization, and presentation of mass spectra of polymers with less restrictions in terms of required resolution and molecular weights.

18.
Rapid Commun Mass Spectrom ; 30(7): 973-81, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26969940

RESUMO

RATIONALE: Poly(ethylene-co-vinyl acetate) copolymers - usually referred to as EVA - are first class industrial polymers used for applications ranging from padding to photovoltaics as encapsulant for the silicon solar cells. Various techniques have been used for their characterization but the analysis of intact EVA chains using mass spectrometry (MS) has not been reported so far. METHODS: Three copolymers containing 18, 25 and 40 wt% vinyl acetate (VA) have been characterized using an off-line coupling of size-exclusion chromatography (SEC) and matrix-assisted laser desorption/ionization (MALDI) spiral-time-of-flight (TOF) high-resolution mass spectrometry (HRMS). The representativeness of those results for the entire samples has been checked using (13) C NMR spectroscopy. Lastly, Kendrick mass defect analysis has been proposed as an alternative and user-friendly data treatment method. RESULTS: The shortest chains isolated by SEC fractionation and mass-analyzed by HRMS have been thoroughly described in terms of end-groups (found to be hydrogens) and co-monomeric composition. The VA content was successfully derived from the peak assignments in MS spectra for the EVA 40 wt% and 25 wt% while it tended to be overestimated for the latest EVA 18 wt% (increasing poly(ethylene) character). Similar results have been found using a faster data treatment method relying on the Kendrick mass defect analysis of the MS data. CONCLUSIONS: EVA low molecular weight intact oligomers have been extensively characterized by MS for the first time and the structural features confidently extended to the full sample according to NMR data. The Kendrick mass analysis finally constituted an efficient method for a fast evaluation of their VA content with no need for manual assignment. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA