Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Dent Res ; 102(6): 616-625, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36951356

RESUMO

Dentinogenesis imperfecta (DI) is the main orodental manifestation of osteogenesis imperfecta (OI) caused by COL1A1 or COL1A2 heterozygous pathogenic variants. Its prevalence varies according to the studied population. Here, we report the molecular analysis of 81 patients with OI followed at reference centers in Brazil and France presenting COL1A1 or COL1A2 variants. Patients were submitted to clinical and radiographic dental examinations to diagnose the presence of DI. In addition, a systematic literature search and a descriptive statistical analysis were performed to investigate OI/DI phenotype-genotype correlation in a worldwide sample. In our cohort, 50 patients had COL1A1 pathogenic variants, and 31 patients had COL1A2 variants. A total of 25 novel variants were identified. Overall, data from a total of 906 individuals with OI were assessed. Results show that DI was more frequent in severe and moderate OI cases. DI prevalence was also more often associated with COL1A2 (67.6%) than with COL1A1 variants (45.4%) because COL1A2 variants mainly lead to qualitative defects that predispose to DI more than quantitative defects. For the first time, 4 DI hotspots were identified. In addition, we showed that 1) glycine substitution by branched and charged amino acids in the α2(I) chain and 2) substitutions occurring in major ligand binding regions-MLRB2 in α1(I) and MLBR 3 in α2(I)-could significantly predict DI (P < 0.05). The accumulated variant data analysis in this study provides a further basis for increasing our comprehension to better predict the occurrence and severity of DI and appropriate OI patient management.


Assuntos
Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo I , Dentinogênese Imperfeita , Osteogênese Imperfeita , Humanos , Colágeno Tipo I/genética , Dentinogênese Imperfeita/genética , Estudos de Associação Genética , Mutação , Osteogênese Imperfeita/diagnóstico por imagem , Osteogênese Imperfeita/genética
2.
J Dent Res ; 101(7): 859-869, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35148649

RESUMO

Craniofacial and jaw bones have unique physiological specificities when compared to axial and appendicular bones. However, the molecular profile of the jaw osteoblast (OB) remains incomplete. The present study aimed to decipher the bone site-specific profiles of transcription factors (TFs) expressed in OBs in vivo. Using RNA sequencing analysis, we mapped the transcriptome of confirmed OBs from 2 different skeletal sites: mandible (Md) and tibia (Tb). The OB transcriptome contains 709 TF genes: 608 are similarly expressed in Md-OB and Tb-OB, referred to as "OB-core"; 54 TF genes are upregulated in Md-OB, referred to as "Md-set"; and 18 TF genes are upregulated in Tb-OB, referred to as "Tb-set." Notably, the expression of 29 additional TF genes depends on their RNA transcript variants. TF genes with no previously known role in OBs and bone were identified. Bioinformatics analysis combined with review of genetic disease databases and a comprehensive literature search showed a significant contribution of anatomical origin to the OB signatures. Md-set and Tb-set are enriched with site-specific TF genes associated with development and morphogenesis (neural crest vs. mesoderm), and this developmental imprint persists during growth and homeostasis. Jaw and tibia site-specific OB signatures are associated with craniofacial and appendicular skeletal disorders as well as neurocristopathies, dental disorders, and digit malformations. The present study demonstrates the feasibility of a new method to isolate pure OB populations and map their gene expression signature in the context of OB physiological environment, avoiding in vitro culture and its associated biases. Our results provide insights into the site-specific developmental pathways governing OBs and identify new major OB regulators of bone physiology. We also established the importance of the OB transcriptome as a prognostic tool for human rare bone diseases to explore the hidden pathophysiology of craniofacial malformations, among the most prevalent congenital defects in humans.


Assuntos
Regulação da Expressão Gênica , Osteoblastos , Humanos , Mandíbula , Crista Neural , Osteoblastos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA