Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 141(15): 1858-1870, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36603185

RESUMO

MYB plays a key role in gene regulation throughout the hematopoietic hierarchy and is critical for the maintenance of normal hematopoietic stem cells (HSC). Acquired genetic dysregulation of MYB is involved in the etiology of a number of leukemias, although inherited noncoding variants of the MYB gene are a susceptibility factor for many hematological conditions, including myeloproliferative neoplasms (MPN). The mechanisms that connect variations in MYB levels to disease predisposition, especially concerning age dependency in disease initiation, are completely unknown. Here, we describe a model of Myb insufficiency in mice that leads to MPN, myelodysplasia, and leukemia in later life, mirroring the age profile of equivalent human diseases. We show that this age dependency is intrinsic to HSC, involving a combination of an initial defective cellular state resulting from small effects on the expression of multiple genes and a progressive accumulation of further subtle changes. Similar to previous studies showing the importance of proteostasis in HSC maintenance, we observed altered proteasomal activity and elevated proliferation indicators, followed by elevated ribosome activity in young Myb-insufficient mice. We propose that these alterations combine to cause an imbalance in proteostasis, potentially creating a cellular milieu favoring disease initiation.


Assuntos
Leucemia , Transtornos Mieloproliferativos , Animais , Camundongos , Humanos , Proteostase , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Regulação da Expressão Gênica , Leucemia/metabolismo , Transtornos Mieloproliferativos/metabolismo
2.
Adv Exp Med Biol ; 1459: 341-358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017851

RESUMO

Myb was identified over four decades ago as the transforming component of acute leukemia viruses in chickens. Since then it has become increasingly apparent that dysregulated MYB activity characterizes many blood cancers, including acute myeloid leukemia, and that it represents the most "addictive" oncoprotein in many, if not all, such diseases. As a consequence of this tumor-specific dependency for MYB, it has become a major focus of efforts to develop specific antileukemia drugs. Much attention is being given to ways to interrupt the interaction between MYB and cooperating factors, in particular EP300/KAT3B and CBP/KAT3A. Aside from candidates identified through screening of small molecules, the most exciting prospect for novel drugs seems to be the design of peptide mimetics that interfere directly at the interface between MYB and its cofactors. Such peptides combine a high degree of target specificity with good efficacy including minimal effects on normal hematopoietic cells.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-myb , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Terapia de Alvo Molecular , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos
3.
Adv Exp Med Biol ; 1459: 3-29, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017837

RESUMO

MYB is a master regulator and pioneer factor highly expressed in hematopoietic progenitor cells (HPCs) where it contributes to the reprogramming processes operating during hematopoietic development. MYB plays a complex role being involved in several lineages of the hematopoietic system. At the molecular level, the MYB gene is subject to intricate regulation at many levels through several enhancer and promoter elements, through transcriptional elongation control, as well as post-transcriptional regulation. The protein is modulated by post-translational modifications (PTMs) such as SUMOylation restricting the expression of its downstream targets. Together with a range of interaction partners, cooperating transcription factors (TFs) and epigenetic regulators, MYB orchestrates a fine-tuned symphony of genes expressed during various stages of haematopoiesis. At the same time, the complex MYB system is vulnerable, being a target for unbalanced control and cancer development.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Proteínas Proto-Oncogênicas c-myb , Humanos , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , Animais , Processamento de Proteína Pós-Traducional , Epigênese Genética , Regulação da Expressão Gênica
4.
Stem Cells ; 40(11): 1056-1070, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-35999023

RESUMO

Liver transplantation is an effective therapy, but increasing demand for donor organs has led to the use of marginal donor organs with increased complication rates. Mesenchymal stromal cells (MSC) pleiotropically modulate aberrant immune-mediated responses and represent a potential therapy to target the inflammation seen post-transplant with marginal donor livers. To avoid the confounding effects of xenotransplantation seen in studies with human MSC, a PDGFRα/Sca-1 (PaS) sorted MSC population was used which was analogous to human MSC populations (LNGFR+Thy-1+VCAM-1Hi). PaS MSC are a well-described population that demonstrate MSC properties without evidence of clonal mutation during expansion. We demonstrate their anti-inflammatory properties herein through their suppression of T-lymphocyte proliferation in vitro and secretion of anti-inflammatory cytokines (IL-10 and OPG) after stimulation (P = .004 and P = .003). The MDR2-/- model of biliary injury and hepatic ischemia-reperfusion (HIR) injury models were used to replicate the non-anastomotic biliary complications seen following liver transplantation. Systemic MSC therapy in MDR2-/- mice led to reduced liver injury with an increase in restorative macrophages (5913 ± 333.9 vs 12 597 ± 665.8, P = .002, n = 7) and a change in lymphocyte ratios (3.55 ± 0.37 vs 2.59 ± 0.139, P = .023, n = 17), whereas subcutaneous administration of MSC showed no beneficial effect. MSC also reduced cell death in the HIR model assessed by Periodic acid-Schiff (PAS) staining (91.7% ± 2.8 vs 80.1% ± 4.6, P = .03). Systemically administered quantum dot-labeled MSC were tracked using single-cell resolution CryoViz imaging which demonstrated their sequestration in the lungs alongside retention/redistribution to injured liver tissue. MSC represent a potential novel therapy in marginal organ transplantation which warrants further study.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Traumatismo por Reperfusão , Camundongos , Animais , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo , Fígado , Traumatismo por Reperfusão/terapia
5.
Nucleic Acids Res ; 49(16): 9132-9153, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34390351

RESUMO

Transposable elements (TEs) occupy nearly 40% of mammalian genomes and, whilst most are fragmentary and no longer capable of transposition, they can nevertheless contribute to cell function. TEs within genes transcribed by RNA polymerase II can be copied as parts of primary transcripts; however, their full contribution to mature transcript sequences remains unresolved. Here, using long and short read (LR and SR) RNA sequencing data, we show that 26% of coding and 65% of noncoding transcripts in human pluripotent stem cells (hPSCs) contain TE-derived sequences. Different TE families are incorporated into RNAs in unique patterns, with consequences to transcript structure and function. The presence of TE sequences within a transcript is correlated with TE-type specific changes in its subcellular distribution, alterations in steady-state levels and half-life, and differential association with RNA Binding Proteins (RBPs). We identify hPSC-specific incorporation of endogenous retroviruses (ERVs) and LINE:L1 into protein-coding mRNAs, which generate TE sequence-derived peptides. Finally, single cell RNA-seq reveals that hPSCs express ERV-containing transcripts, whilst differentiating subpopulations lack ERVs and express SINE and LINE-containing transcripts. Overall, our comprehensive analysis demonstrates that the incorporation of TE sequences into the RNAs of hPSCs is more widespread and has a greater impact than previously appreciated.


Assuntos
Retrovirus Endógenos/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Células-Tronco Pluripotentes/metabolismo , Transcriptoma , Linhagem Celular , Humanos , RNA não Traduzido/genética , Proteínas de Ligação a RNA/metabolismo
6.
Stem Cells ; 36(7): 1062-1074, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29488279

RESUMO

We investigated the adhesive behavior of mesenchymal stem cells (MSC) in blood, which might influence their fate when infused as therapy. Isolated human bone marrow MSC (BMMSC) or umbilical cord MSC (UCMSC) adhered efficiently from flow to the matrix proteins, collagen, or fibronectin, but did not adhere to endothelial selectins. However, when suspended in blood, BMMSC no longer adhered to collagen, while UCMSC adhered along with many aggregated platelets. Neither MSC adhered to fibronectin from flowing blood, although the fibronectin surface did become coated with a platelet monolayer. UCMSC induced platelet aggregation in platelet rich plasma, and caused a marked drop in platelet count when mixed with whole human or mouse blood in vitro, or when infused into mice. In contrast, BMMSC did not activate platelets or induce changes in platelet count. Interestingly, isolated UCMSC and BMMSC both adhered to predeposited platelets. The differences in behavior in blood were attributable to expression of podoplanin (an activating ligand for the platelet receptor CLEC-2), which was detected on UCMSC, but not BMMSC. Thus, platelets were activated when bound to UCMSC, but not BMMSC. Platelet aggregation by UCMSC was inhibited by recombinant soluble CLEC-2, and UCMSC did not cause a reduction in platelet count when mixed with blood from mice deficient in CLEC-2. We predict that both MSC would carry platelets in the blood, but their interaction with vascular endothelium would depend on podoplanin-induced activation of the bound platelets. Such interactions with platelets might target MSC to damaged tissue, but could also be thrombotic. Stem Cells 2018;36:1062-1074.


Assuntos
Plaquetas/metabolismo , Adesão Celular/genética , Células-Tronco Mesenquimais/metabolismo , Animais , Humanos , Camundongos
7.
Lancet Oncol ; 19(2): e102-e112, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29413464

RESUMO

Cumulatively, breast, cervical, ovarian, and uterine cancer account for more than 70% of cancers in women in India. Distinct differences in the clinical presentation of women with cancer suggest underlying differences in cancer biology and genetics. The peak age of onset of breast and ovarian cancer appears to be a decade earlier in India (age 45-50 years) than in high-income countries (age >60 years). Understanding these differences through research to develop diagnosis, screening, prevention, and treatment frameworks that ar e specific to the Indian population are critical and essential to improving women's health in India. Since the sequencing of the human genome in 2001, applications of advanced technologies, such as massively parallel sequencing, have transformed the understanding of the genetic and environmental drivers of cancer. How can advanced technologies be harnessed to provide health-care solutions at a scale and to a budget suitable for a country of 1·2 billion people? What research programmes are necessary to answer questions specific to India, and to build capacity for innovative solutions using these technologies? In order to answer these questions, we convened a workshop with key stakeholders to address these issues. In this Series paper, we highlight challenges in tackling the growing cancer burden in India, discuss ongoing genomics research and developments in infrastructure, and suggest key priorities for future research in cancer in India.


Assuntos
Pesquisa Biomédica/estatística & dados numéricos , Detecção Precoce de Câncer/estatística & dados numéricos , Neoplasias dos Genitais Femininos/epidemiologia , Neoplasias dos Genitais Femininos/genética , Genômica , Adulto , Idade de Início , Idoso , Pesquisa Biomédica/economia , Atenção à Saúde/economia , Atenção à Saúde/métodos , Feminino , Neoplasias dos Genitais Femininos/diagnóstico , Neoplasias dos Genitais Femininos/terapia , Prioridades em Saúde , Humanos , Índia/epidemiologia , Programas de Rastreamento/organização & administração , Pessoa de Meia-Idade , Avaliação das Necessidades , Prevalência , Medição de Risco
8.
J Biol Chem ; 292(11): 4755-4763, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28053091

RESUMO

Hereditary tyrosinemia type 1 (HT1) is a severe human autosomal recessive disorder caused by the deficiency of fumarylacetoacetate hydroxylase (FAH), an enzyme catalyzing the last step in the tyrosine degradation pathway. Lack of FAH causes accumulation of toxic metabolites (fumarylacetoacetate and succinylacetone) in blood and tissues, ultimately resulting in severe liver and kidney damage with onset that ranges from infancy to adolescence. This tissue damage is lethal but can be controlled by administration of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC), which inhibits tyrosine catabolism upstream of the generation of fumarylacetoacetate and succinylacetone. Notably, in animals lacking FAH, transient withdrawal of NTBC can be used to induce liver damage and a concomitant regenerative response that stimulates the growth of healthy hepatocytes. Among other things, this model has raised tremendous interest for the in vivo expansion of human primary hepatocytes inside these animals and for exploring experimental gene therapy and cell-based therapies. Here, we report the generation of FAH knock-out rabbits via pronuclear stage embryo microinjection of transcription activator-like effector nucleases. FAH-/- rabbits exhibit phenotypic features of HT1 including liver and kidney abnormalities but additionally develop frequent ocular manifestations likely caused by local accumulation of tyrosine upon NTBC administration. We also show that allogeneic transplantation of wild-type rabbit primary hepatocytes into FAH-/- rabbits enables highly efficient liver repopulation and prevents liver insufficiency and death. Because of significant advantages over rodents and their ease of breeding, maintenance, and manipulation compared with larger animals including pigs, FAH-/- rabbits are an attractive alternative for modeling the consequences of HT1.


Assuntos
Hidrolases/genética , Tirosinemias/genética , Animais , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Hepatócitos/transplante , Humanos , Hidrolases/metabolismo , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Falência Hepática/etiologia , Falência Hepática/metabolismo , Falência Hepática/patologia , Falência Hepática/terapia , Masculino , Coelhos , Tirosinemias/complicações , Tirosinemias/metabolismo , Tirosinemias/patologia
9.
Gastroenterology ; 153(1): 233-248.e16, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28363640

RESUMO

BACKGROUND & AIMS: There is growing interest in the use of bone marrow cells to treat liver fibrosis, however, little is known about their antifibrotic efficacy or the identity of their effector cell(s). Sphingosine-1-phosphate (S1P) mediates egress of immune cells from the lymphoid organs into the lymphatic vessels; we investigated its role in the response of hematopoietic stem cells (HSCs) to liver fibrosis in mice. METHODS: Purified (c-kit+/sca1+/lin-) HSCs were infused repeatedly into mice undergoing fibrotic liver injury. Chronic liver injury was induced in BoyJ mice by injection of carbon tetrachloride (CCl4) or placement on a methionine-choline-deficient diet. Some mice were irradiated and given transplants of bone marrow cells from C57BL6 mice, with or without the S1P antagonist FTY720; we then studied HSC mobilization and localization. Migration of HSC lines was quantified in Transwell assays. Levels of S1P in liver, bone marrow, and lymph fluid were measured using an enzyme-linked immunosorbent assay. Liver tissues were collected and analyzed by immunohistochemical quantitative polymerase chain reaction and sphingosine kinase activity assays. We performed quantitative polymerase chain reaction analyses of the expression of sphingosine kinase 1 and 2, sphingosine-1-phosphate lyase 1, and sphingosine-1-phosphate phosphatase 1 in normal human liver and cirrhotic liver from patients with alcohol-related liver disease (n = 6). RESULTS: Infusions of HSCs into mice with liver injury reduced liver scarring based on picrosirius red staining (49.7% reduction in mice given HSCs vs control mice; P < .001), and hepatic hydroxyproline content (328 mg/g in mice given HSCs vs 428 mg/g in control mice; P < .01). HSC infusion also reduced hepatic expression of α-smooth muscle actin (0.19 ± 0.007-fold compared with controls; P < .0001) and collagen type I α 1 chain (0.29 ± 0.17-fold compared with controls; P < .0001). These antifibrotic effects were maintained with infusion of lymphoid progenitors that lack myeloid potential and were associated with increased numbers of recipient neutrophils and macrophages in liver. In studies of HSC cell lines, we found HSCs to recruit monocytes, and this process to require C-C motif chemokine receptor 2. In fibrotic liver tissue from mice and patients, hepatic S1P levels increased owing to increased hepatic sphingosine kinase-1 expression, which contributed to a reduced liver:lymph S1P gradient and limited HSC egress from the liver. Mice given the S1P antagonist (FTY720) with HSCs had increased hepatic retention of HSCs (1697 ± 247 cells in mice given FTY720 vs 982 ± 110 cells in controls; P < .05), and further reductions in fibrosis. CONCLUSIONS: In studies of mice with chronic liver injury, we showed the antifibrotic effects of repeated infusions of purified HSCs. We found that HSCs promote recruitment of endogenous macrophages and neutrophils. Strategies to reduce SIP signaling and increase retention of HSCs in the liver could increase their antifibrotic activities and be developed for treatment of patients with liver fibrosis.


Assuntos
Movimento Celular/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/fisiologia , Cirrose Hepática/prevenção & controle , Lisofosfolipídeos/antagonistas & inibidores , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Actinas/metabolismo , Aldeído Liases/genética , Animais , Linhagem Celular , Doença Hepática Crônica Induzida por Substâncias e Drogas/complicações , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Feminino , Cloridrato de Fingolimode/uso terapêutico , Expressão Gênica , Humanos , Imunossupressores/uso terapêutico , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Linfa/metabolismo , Macrófagos , Masculino , Proteínas de Membrana/genética , Camundongos , Monócitos , Neutrófilos , Monoéster Fosfórico Hidrolases/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/antagonistas & inibidores , Esfingosina/metabolismo
10.
Blood ; 127(9): 1173-82, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26631113

RESUMO

The transcription factor Myb plays a key role in the hematopoietic system and has been implicated in the development of leukemia and other human cancers. Inhibition of Myb is therefore emerging as a potential therapeutic strategy for these diseases. However, because of a lack of suitable inhibitors, the feasibility of therapeutic approaches based on Myb inhibition has not been explored. We have identified the triterpenoid Celastrol as a potent low-molecular-weight inhibitor of the interaction of Myb with its cooperation partner p300. We demonstrate that Celastrol suppresses the proliferative potential of acute myeloid leukemia (AML) cells while not affecting normal hematopoietic progenitor cells. Furthermore, Celastrol prolongs the survival of mice in a model of an aggressive AML. Overall, our work demonstrates the therapeutic potential of a small molecule inhibitor of the Myb/p300 interaction for the treatment of AML and provides a starting point for the further development of Myb-inhibitory compounds for the treatment of leukemia and, possibly, other tumors driven by deregulated Myb.


Assuntos
Proteína p300 Associada a E1A/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-myb/metabolismo , Bibliotecas de Moléculas Pequenas/uso terapêutico , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Galinhas , Modelos Animais de Doenças , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos Endogâmicos C57BL , Células Mieloides/efeitos dos fármacos , Células Mieloides/patologia , Triterpenos Pentacíclicos , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Bibliotecas de Moléculas Pequenas/farmacologia , Triterpenos/farmacologia , Triterpenos/uso terapêutico
11.
Blood ; 126(13): 1601-8, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26282541

RESUMO

The glycoprotein VI (GPVI)-Fc receptor γ (FcRγ) chain is the major platelet signaling receptor for collagen. Paradoxically, in a FeCl3 injury model, occlusion, but not initiation of thrombus formation, is delayed in GPVI-deficient and GPVI-depleted mice. In this study, we demonstrate that GPVI is a receptor for fibrin and speculate that this contributes to development of an occlusive thrombus. We observed a marked increase in tyrosine phosphorylation, including the FcRγ chain and Syk, in human and mouse platelets induced by thrombin in the presence of fibrinogen and the αIIbß3 blocker eptifibatide. This was not seen in platelets stimulated by a protease activated receptor (PAR)-4 peptide, which is unable to generate fibrin from fibrinogen. The pattern of tyrosine phosphorylation was similar to that induced by activation of GPVI. Consistent with this, thrombin did not induce tyrosine phosphorylation of Syk and the FcRγ chain in GPVI-deficient mouse platelets. Mouse platelets underwent full spreading on fibrin but not fibrinogen, which was blocked in the presence of a Src kinase inhibitor or in the absence of GPVI. Spreading on fibrin was associated with phosphatidylserine exposure (procoagulant activity), and this too was blocked in GPVI-deficient platelets. The ectodomain of GPVI was shown to bind to immobilized monomeric and polymerized fibrin. A marked increase in embolization was seen following FeCl3 injury in GPVI-deficient mice, likely contributing to the delay in occlusion in this model. These results demonstrate that GPVI is a receptor for fibrin and provide evidence that this interaction contributes to thrombus growth and stability.


Assuntos
Coagulação Sanguínea , Plaquetas/metabolismo , Fibrina/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Trombose/metabolismo , Animais , Plaquetas/citologia , Humanos , Camundongos , Fosforilação
12.
Blood ; 125(24): 3769-77, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-25908104

RESUMO

Mice with a constitutive or platelet-specific deletion of the C-type-lectin-like receptor (CLEC-2) exhibit hemorrhaging in the brain at mid-gestation. We sought to investigate the basis of this defect, hypothesizing that it is mediated by the loss of CLEC-2 activation by its endogenous ligand, podoplanin, which is expressed on the developing neural tube. To induce deletion of podoplanin at the 2-cell stage, we generated a podoplanin(fl/fl) mouse crossed to a PGK-Cre mouse. Using 3-dimensional light-sheet microscopy, we observed cerebral vessels were tortuous and aberrantly patterned at embryonic (E) day 10.5 in podoplanin- and CLEC-2-deficient mice, preceding the formation of large hemorrhages throughout the fore-, mid-, and hindbrain by E11.5. Immunofluorescence and electron microscopy revealed defective pericyte recruitment and misconnections between the endothelium of developing blood vessels and surrounding pericytes and neuro-epithelial cells. Nestin-Cre-driven deletion of podoplanin on neural progenitors also caused widespread cerebral hemorrhaging. Hemorrhaging was also seen in the ventricles of embryos deficient in the platelet integrin subunit glycoprotein IIb or in embryos in which platelet α-granule and dense granule secretion is abolished. We propose a novel role for podoplanin on the neuro-epithelium, which interacts with CLEC-2 on platelets, mediating platelet adhesion, aggregation, and secretion to guide the maturation and integrity of the developing vasculature and prevent hemorrhage.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/embriologia , Circulação Cerebrovascular , Lectinas Tipo C/genética , Glicoproteínas de Membrana/genética , Animais , Plaquetas/metabolismo , Padronização Corporal , Encéfalo/metabolismo , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Hemorragias Intracranianas/genética , Hemorragias Intracranianas/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Ativação Plaquetária , Agregação Plaquetária , Glicoproteína IIb da Membrana de Plaquetas/genética , Glicoproteína IIb da Membrana de Plaquetas/metabolismo
13.
Stem Cells ; 33(9): 2785-97, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26124062

RESUMO

Mesenchymal stem cells (MSCs) have shown therapeutic promise in many experimental and clinical models of inflammation. However, a commonly reported feature of MSC transplantation is poor homing to injured tissues. Previously, we have shown that pretreatment with cytokines/chemical factors enhances hematopoietic SC adhesion within intestinal microvasculature following ischemia-reperfusion (IR) injury. Using intravital microscopy, the ability of similar pretreatment strategies to enhance the recruitment of murine MSCs to murine intestinal microvasculature following IR injury was investigated. Primary MSCs were isolated from bone marrow and selected on the basis of platelet-derived growth factor receptor-α and SC antigen-1 positivity (PDGFRα(+) /Sca-1(+) ). MSC recruitment was similar in IR injured gut mucosa when compared with sham operated controls, with limited cell adhesion observed. MSCs appeared contorted in microvessels, suggesting physical entrapment. Although not recruited specifically by injury, MSC administration significantly reduced neutrophil recruitment and improved tissue perfusion in the severely injured jejunum. Vasculoprotective effects were not demonstrated in the lesser injured ileum. Pretreatment of MSCs with tumor necrosis factor (TNF)-α, CXCL12, interferon (IFN)-γ, or hydrogen peroxide did not enhance their intestinal recruitment. In fact, TNFα and IFNγ removed the previous therapeutic ability of transplanted MSCs to reduce neutrophil infiltration and improve perfusion in the jejunum. We provide direct evidence that MSCs can rapidly limit leukocyte recruitment and improve tissue perfusion following intestinal IR injury. However, this study also highlights complexities associated with strategies to improve MSC therapeutic efficacy. Future studies using cytokine/chemical pretreatments to enhance MSC recruitment/function require careful consideration and validation to ensure therapeutic function is not impeded.


Assuntos
Movimento Celular/fisiologia , Íleo/irrigação sanguínea , Íleo/lesões , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Citocinas/farmacologia , Íleo/metabolismo , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/metabolismo
14.
Stem Cells ; 33(2): 479-90, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25329760

RESUMO

The transcription factor c-Myb was originally identified as a transforming oncoprotein encoded by two avian leukemia viruses. Subsequently, through the generation of mouse models that affect its expression, c-Myb has been shown to be a key regulator of hematopoiesis, including having critical roles in hematopoietic stem cells (HSCs). The precise function of c-Myb in HSCs although remains unclear. We have generated a novel c-myb allele in mice that allows direct observation of c-Myb protein levels in single cells. Using this reporter line we demonstrate that subtypes of HSCs can be isolated based upon their respective c-Myb protein expression levels. HSCs expressing low levels of c-Myb protein (c-Myb(low) HSC) appear to represent the most immature, dormant HSCs and they are a predominant component of HSCs that retain bromodeoxyuridine labeling. Hematopoietic stress, induced by 5-fluorouracil ablation, revealed that in this circumstance c-Myb-expressing cells become critical for multilineage repopulation. The discrimination of HSC subpopulations based on c-Myb protein levels is not reflected in the levels of c-myb mRNA, there being no more than a 1.3-fold difference comparing c-Myb(low) and c-Myb(high) HSCs. This illustrates how essential it is to include protein studies when aiming to understand the regulatory networks that control stem cell behavior.


Assuntos
Regulação da Expressão Gênica/fisiologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas Proto-Oncogênicas c-myb/biossíntese , Animais , Genes Reporter , Camundongos , Proteínas Proto-Oncogênicas c-myb/genética
15.
J Immunol ; 193(3): 1496-503, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24973446

RESUMO

Pigs share many physiological, biochemical, and anatomical similarities with humans and have emerged as valuable large animal models for biomedical research. Considering the advantages in immune system resemblance, suitable size, and longevity for clinical practical and monitoring purpose, SCID pigs bearing dysfunctional RAG could serve as important experimental tools for regenerative medicine, allograft and xenograft transplantation, and reconstitution experiments related to the immune system. In this study, we report the generation and phenotypic characterization of RAG1 and RAG2 knockout pigs using transcription activator-like effector nucleases. Porcine fetal fibroblasts were genetically engineered using transcription activator-like effector nucleases and then used to provide donor nuclei for somatic cell nuclear transfer. We obtained 27 live cloned piglets; among these piglets, 9 were targeted with biallelic mutations in RAG1, 3 were targeted with biallelic mutations in RAG2, and 10 were targeted with a monoallelic mutation in RAG2. Piglets with biallelic mutations in either RAG1 or RAG2 exhibited hypoplasia of immune organs, failed to perform V(D)J rearrangement, and lost mature B and T cells. These immunodeficient RAG1/2 knockout pigs are promising tools for biomedical and translational research.


Assuntos
Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Técnicas de Inativação de Genes/métodos , Marcação de Genes/métodos , Proteínas de Homeodomínio/genética , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Anemia Aplástica/embriologia , Anemia Aplástica/genética , Anemia Aplástica/imunologia , Animais , Modelos Animais de Doenças , Transferência Embrionária , Feminino , Fibroblastos/imunologia , Fibroblastos/patologia , Mutação INDEL , Masculino , Cultura Primária de Células , Recombinação Genética/imunologia , Imunodeficiência Combinada Severa/embriologia , Sus scrofa , Suínos , Porco Miniatura
16.
Stem Cells ; 31(12): 2690-702, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23939932

RESUMO

Mesenchymal stem cells (MSC) have immunomodulatory properties, but their effects on endothelial cells (EC) and recruitment of leukocytes are unknown. We cocultured human bone marrow-derived MSC with EC and found that MSC could downregulate adhesion of flowing neutrophils or lymphocytes and their subsequent transendothelial migration. This applied for EC treated with tumor necrosis factor-α (TNF), interleukin-1ß (IL-1), or TNF and interferon-γ combined. Supernatant from cocultures also inhibited endothelial responses. This supernatant had much higher levels of IL-6 than supernatant from cultures of the individual cells, which also lacked inhibitory functions. Addition of neutralizing antibody against IL-6 removed the bioactivity of the supernatant and also the immunomodulatory effects of coculture. Studies using siRNA showed that IL-6 came mainly from the MSC in coculture, and reduction in production in MSC alone was sufficient to impair the protective effects of coculture. Interestingly, siRNA knockdown of IL-6-receptor expression in MSC as well as EC inhibited anti-inflammatory effects. This was explained when we detected soluble IL-6R receptor in supernatants and showed that receptor removal reduced the potency of supernatant. Neutralization of transforming growth factor-ß indicated that activation of this factor in coculture contributed to IL-6 production. Thus, crosstalk between MSC and EC caused upregulation of production of IL-6 by MSC which in turn downregulated the response of EC to inflammatory cytokines, an effect potentiated by MSC release of soluble IL-6R. These studies establish a novel mechanism by which MSC might have protective effects against inflammatory pathology and cardiovascular disease.


Assuntos
Comunicação Celular/imunologia , Citocinas/imunologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Leucócitos/imunologia , Células-Tronco Mesenquimais/imunologia , Neutrófilos/imunologia , Adesão Celular/imunologia , Regulação para Baixo , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Leucócitos/citologia , Células-Tronco Mesenquimais/citologia , Neutrófilos/citologia
17.
J Med Chem ; 67(4): 2529-2548, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38331432

RESUMO

Tuberculosis (TB) is the leading cause of global morbidity and mortality resulting from infectious disease, with over 10.6 million new cases and 1.4 million deaths in 2021. This global emergency is exacerbated by the emergence of multidrug-resistant MDR-TB and extensively drug-resistant XDR-TB; therefore, new drugs and new drug targets are urgently required. From a whole cell phenotypic screen, a series of azetidines derivatives termed BGAz, which elicit potent bactericidal activity with MIC99 values <10 µM against drug-sensitive Mycobacterium tuberculosis and MDR-TB, were identified. These compounds demonstrate no detectable drug resistance. The mode of action and target deconvolution studies suggest that these compounds inhibit mycobacterial growth by interfering with cell envelope biogenesis, specifically late-stage mycolic acid biosynthesis. Transcriptomic analysis demonstrates that the BGAz compounds tested display a mode of action distinct from the existing mycobacterial cell wall inhibitors. In addition, the compounds tested exhibit toxicological and PK/PD profiles that pave the way for their development as antitubercular chemotherapies.


Assuntos
Azetidinas , Tuberculose Extensivamente Resistente a Medicamentos , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Azetidinas/farmacologia , Azetidinas/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Testes de Sensibilidade Microbiana
18.
J Biol Chem ; 287(47): 39753-65, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23035126

RESUMO

A disintegrin and metalloprotease 10 (ADAM10) is a ubiquitous transmembrane metalloprotease that cleaves the extracellular regions from over 40 different transmembrane target proteins, including Notch and amyloid precursor protein. ADAM10 is essential for embryonic development and is also important in inflammation, cancer, and Alzheimer disease. However, ADAM10 regulation remains poorly understood. ADAM10 is compartmentalized into membrane microdomains formed by tetraspanins, which are a superfamily of 33 transmembrane proteins in humans that regulate clustering and trafficking of certain other transmembrane "partner" proteins. This is achieved by specific tetraspanin-partner interactions, but it is not clear which tetraspanins specifically interact with ADAM10. The aims of this study were to identify which tetraspanins interact with ADAM10 and how they regulate this metalloprotease. Co-immunoprecipitation identified specific ADAM10 interactions with Tspan5, Tspan10, Tspan14, Tspan15, Tspan17, and Tspan33/Penumbra. These are members of the largely unstudied TspanC8 subgroup of tetraspanins, all six of which promoted ADAM10 maturation. Different cell types express distinct repertoires of TspanC8 tetraspanins. Human umbilical vein endothelial cells express relatively high levels of Tspan14, the knockdown of which reduced ADAM10 surface expression and activity. Mouse erythrocytes express predominantly Tspan33, and ADAM10 expression was substantially reduced in the absence of this tetraspanin. In contrast, ADAM10 expression was normal on Tspan33-deficient mouse platelets in which Tspan14 is the major TspanC8 tetraspanin. These results define TspanC8 tetraspanins as essential regulators of ADAM10 maturation and trafficking to the cell surface. This finding has therapeutic implications because focusing on specific TspanC8-ADAM10 complexes may allow cell type- and/or substrate-specific ADAM10 targeting.


Assuntos
Proteínas ADAM/biossíntese , Secretases da Proteína Precursora do Amiloide/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Microdomínios da Membrana/enzimologia , Proteínas de Membrana/biossíntese , Tetraspaninas/metabolismo , Proteínas ADAM/genética , Proteína ADAM10 , Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/genética , Animais , Plaquetas/citologia , Plaquetas/enzimologia , Linhagem Celular , Eritrócitos/citologia , Eritrócitos/enzimologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/enzimologia , Inflamação/genética , Inflamação/patologia , Microdomínios da Membrana/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Ligação Proteica , Transporte Proteico/fisiologia , Tetraspaninas/genética
19.
EMBO J ; 28(10): 1492-504, 2009 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-19360001

RESUMO

Murine haematopoietic stem cells (HSCs) are contained in the Kit+Sca1+Lin(-) (KSL) population of bone marrow and are able to repopulate lethally irradiated mice. Myeloproliferative disorders (MPDs) are thought to be clonogenic diseases arising at the level of the HSC. Here, we show that mice expressing low levels of the transcription factor c-Myb, as the result of genetic knockdown, develop a transplantable myeloproliferative phenotype that closely resembles the human disease essential thrombocythaemia (ET). Unlike wild-type cells, the KSL population in c-myb knockdown bone marrow cannot repopulate irradiated mice and does not transfer the disease. Instead, cells positive for Kit and expressing low to medium levels of CD11b acquire self-renewing stem cell properties and are responsible for the perpetuation of the myeloproliferative phenotype.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Proteínas Proto-Oncogênicas c-myb/fisiologia , Trombocitemia Essencial/patologia , Animais , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-myb/genética
20.
Hepatology ; 56(3): 1063-73, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22422467

RESUMO

UNLABELLED: Human bone marrow mesenchymal stem cells (hMSCs) have shown benefit in clinical trials of patients with liver disease. Efficient delivery of cells to target organs is critical to improving their effectiveness. This requires an understanding of the mechanisms governing cellular engraftment into the liver. Binding of hMSCs to normal/injured liver tissue, purified extracellular matrices, and human hepatic sinusoidal endothelial cells (HSECs) were quantified in static and flow conditions. To define the mechanisms underpinning hMSC interactions, neutralizing adhesion molecule antibodies were used. Fluorescently labelled hMSCs were infused intraportally into CCl(4) -injured mice with and without neutralizing antibodies. hMSCs expressed high levels of CD29/ß1-integrin and CD44. Using liver tissue binding assays, hMSC adhesion was greatest in diseased human liver versus normal liver (32.2 cells/field versus 20.5 cells/field [P = 0.048]). Neutralizing antibodies against CD29 and CD44 reduced hMSC binding to diseased liver by 34% and 35%, respectively (P = 0.05). hMSCs rolled at 528 µm/second on HSECs in flow assays. This rolling was abolished by CD29 blockade on hMSCs and vascular cell adhesion molecule-1 (VCAM-1) blockade on HSECs. Firm adhesion to HSECs was reduced by CD29 (55% [P = 0.002]) and CD44 (51% [P = 0.04]) blockade. Neutralizing antibodies to CD29 and CD44 reduced hepatic engraftment of hMSCs in murine liver from 4.45 cells/field to 2.88 cells/field (P = 0.025) and 2.35 cells/field (P = 0.03), respectively. hMSCs expressed modest levels of chemokine receptors including CCR4, CCR5, and CXCR3, but these made little contribution to hMSC adhesion in this setting. CONCLUSION: hMSCs bind preferentially to injured liver. Rolling of hMSCs is regulated by CD29/VCAM-1, whereas CD29/CD44 interactions with VCAM-1, fibronectin, and hyaluronan on HSECs determine firm adhesion both in vitro and in vivo as demonstrated using a murine model of liver injury.


Assuntos
Movimento Celular , Receptores de Hialuronatos/fisiologia , Integrina beta1/fisiologia , Fígado/lesões , Fígado/patologia , Células-Tronco Mesenquimais/fisiologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA