Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Am J Pathol ; 185(9): 2550-62, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26185013

RESUMO

The endothelial-to-mesenchymal transition (EndoMT) is a crucial cellular process during heart development necessary to the formation of cardiac valves. This embryonic process reappears in several pathological situations, such as vascular injury or organ fibrosis of various etiologies, as a mediator of extracellular matrix-producing cells. Because radiation induces both vascular damage and fibrosis, we investigated whether radiation exposure induces EndoMT in primary human intestinal microvascular endothelial cells (HIMECs) and whether EndoMT contributes to radiation-induced rectal damage in humans and in a preclinical model of radiation proctitis in mice. Irradiated HIMECs show phenotypic hallmarks of radiation-induced endothelial cell activation in vitro. Moreover, HIMECs undergo changes in molecular expression pattern compatible with EndoMT, with up-regulation of mesenchymal markers and down-regulation of endothelial markers via transforming growth factor/Smad pathway activation. In vivo, EndoMT readily occurs in the human rectum after radiation therapy for rectal adenocarcinoma. Finally, EndoMT was observed in rectal mucosal and submucosal microvessels in a preclinical model of radiation proctitis in Tie2-green fluorescent protein reporter-expressing mice all along radiation proctitis development, also associated with transforming growth factor/Smad pathway activation. In conclusion, radiation-induced cell activation and tissue inflammation constitute a setting that fosters the phenotypic conversion of endothelial cells into mesenchymal cells. Therefore, EndoMT is identified as a potential participant in radiation-induced gut damage and may represent an interesting therapeutic target in cases of radiation-induced pelvic disease.


Assuntos
Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Proctite/metabolismo , Lesões por Radiação/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Transição Epitelial-Mesenquimal , Fibrose/metabolismo , Fibrose/patologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Proctite/genética , Proctite/patologia , Regulação para Cima/efeitos da radiação
2.
Dig Dis Sci ; 60(6): 1633-44, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25577272

RESUMO

BACKGROUND: Radiation damage to the normal gut is a dose-limiting factor in the application of radiation therapy to treat abdominal and pelvic cancers. All tissue cell types react in concert to orchestrate an acute inflammatory reaction followed by a delayed chronic scarring process. Osteopontin (OPN) is a matricellular protein known to be involved in various physiological but also pathological processes such as tissue inflammation and fibrosis. AIMS: The aim of our study was to determine whether OPN knockout influences the severity of radiation proctitis and to investigate the role of OPN in the development of radiation-induced gut damage. RESULTS: Here we show that human radiation proctitis is associated with increased immunostaining of the intracellular and extracellular/matrix-linked isoforms of OPN. Moreover, endothelial cells in vitro and rectal tissue in a preclinical model of radiation proctitis in mice both respond to radiation exposure by a sustained increase in OPN mRNA and protein levels. Genetic deficiency of OPN did not influence radiation-induced rectal damage and was associated with significantly decreased animal survival. The acute and late radiation injury scores were similar in OPN-null mice compared with their control littermates. CONCLUSION: This study shows that in our model and given the pleiotropic actions of OPN in tissue inflammation and fibrosis, further studies are necessary to understand the precise roles of OPN in radiation-induced proctitis and to determine whether OPN is a useful therapeutic tool in prevention of radiation-induced intestinal tissue injury.


Assuntos
Osteopontina/metabolismo , Proctite/etiologia , Proctite/metabolismo , Lesões por Radiação/metabolismo , Neoplasias Retais/radioterapia , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Humanos , Técnicas Imunoenzimáticas , Escala de Gravidade do Ferimento , Masculino , Mastócitos/metabolismo , Camundongos , Camundongos Knockout , RNA/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
J Biol Chem ; 287(46): 38913-21, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22995913

RESUMO

The endothelium contributes to the control of the tissue inflammatory response following stress and in particular after exposure to ionizing radiation. We previously showed that the TG-interacting factor 1 (TGIF1) plays a role in radiation-induced normal tissue injury. In this study we hypothesized that this protein could play a role in inflammation. The role of TGIF1 in the stress-induced proinflammatory phenotype was investigated in human endothelial cells. In HUVECs ionizing radiation induces TGIF1 expression as well as a proinflammatory phenotype associated with up-regulation of IL-6, IL-8, CXCL1, MIP-2, and MCP-1. TGIF1 overexpression enhances the radiation-induced proinflammatory phenotype whereas TGIF1 silencing limits both the TNF-α- and radiation-induced overexpression of proinflammatory cytokines. Interestingly, in vivo, in radiation-induced intestinal inflammation in mice, TGIF1 genetic deficiency is associated with a reduced radiation-induced overexpression of proinflammatory molecules. In HUVECs, TNF-α- and radiation-induced NF-κB pathway activation is not influenced by TGIF1 expression, whereas TGIF1 knockdown inhibits both TNF-α- and radiation-induced p38 MAPK pathway activation. This study demonstrates that TGIF1 plays a role in TNF-α- and radiation-induced inflammation and suggests that it could be a target in limiting this event in the vascular compartment.


Assuntos
Células Endoteliais/citologia , Proteínas de Homeodomínio/metabolismo , Proteínas Repressoras/metabolismo , Animais , Citocinas/metabolismo , Endotélio Vascular/citologia , Humanos , Imuno-Histoquímica/métodos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Radiação Ionizante , Proteínas Smad/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Am J Pathol ; 178(2): 640-51, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21281796

RESUMO

Radiation proctitis is characterized by mucosal inflammation followed by adverse chronic tissue remodeling and is associated with substantial morbidity and mortality. Mast cell hyperplasia has been associated with diseases characterized by pathological tissue remodeling and fibrosis. Rectal tissue from patients treated with radiotherapy shows mast cell hyperplasia and activation, suggesting that these cells play a role in the development of radiation-induced sequelae. To investigate the role of mast cells in radiation damage, experimental radiation proctitis was induced in a mast cell-deficient (W(sh)/W(sh)) mouse model. The colon and rectum of W(sh)/W(sh) and wild-type mice were exposed to 27-Gy single-dose irradiation and studied after 2 and 14 weeks. Irradiated rodent rectum showed mast cell hyperplasia. W(sh)/W(sh) mice developed less acute and chronic rectal radiation damage than their control littermates. Tissue protection was associated with increased tissue neutrophil influx and expression of several inflammatory mediators immediately after radiation exposure. It was further demonstrated that mast cell chymase, tryptase, and histamine could change human muscularis propria smooth muscle cells into a migrating/proliferating and proinflammatory phenotype. These data show that mast cells have deleterious effects on both acute and chronic radiation proctitis, possibly by limiting acute tissue neutrophil influx and by favoring phenotypic orientation of smooth muscle cells, thus making them active participants in the radiation-induced inflammatory process and dystrophy of the rectal wall.


Assuntos
Colo/patologia , Mastócitos/patologia , Proctite/etiologia , Proctite/patologia , Radioterapia/efeitos adversos , Reto/patologia , Animais , Biomarcadores/metabolismo , Quimases/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Meios de Cultivo Condicionados/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Histamina/metabolismo , Humanos , Hiperplasia , Inflamação/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Mastócitos/efeitos dos fármacos , Mastócitos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reto/efeitos dos fármacos , Reto/metabolismo , Coloração e Rotulagem , Triptases/metabolismo
5.
iScience ; 25(1): 103685, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35106469

RESUMO

The vascular endothelium is a hot spot in the response to radiation therapy for both tumors and normal tissues. To improve patient outcomes, interpretable systemic hypotheses are needed to help radiobiologists and radiation oncologists propose endothelial targets that could protect normal tissues from the adverse effects of radiation therapy and/or enhance its antitumor potential. To this end, we captured the kinetics of multi-omics layers-i.e. miRNome, targeted transcriptome, proteome, and metabolome-in irradiated primary human endothelial cells cultured in vitro. We then designed a strategy of deep learning as in convolutional graph networks that facilitates unsupervised high-level feature extraction of important omics data to learn how ionizing radiation-induced endothelial dysfunction may evolve over time. Last, we present experimental data showing that some of the features identified using our approach are involved in the alteration of angiogenesis by ionizing radiation.

6.
Int J Radiat Oncol Biol Phys ; 112(4): 975-985, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34808254

RESUMO

PURPOSE: Radiation-induced cellular senescence is a double-edged sword, acting as both a tumor suppression process limiting tumor proliferation, and a crucial process contributing to normal tissue injury. Endothelial cells play a role in normal tissue injury after radiation therapy. Recently, a study observed an accumulation of senescent endothelial cells (ECs) around radiation-induced lung focal lesions following stereotactic radiation injury in mice. However, the effect of radiation on EC senescence remains unclear because it depends on dose and fractionation, and because the senescent phenotype is heterogeneous and dynamic. METHODS AND MATERIALS: Using a systems biology approach in vitro, we deciphered the dynamic senescence-associated transcriptional program induced by irradiation. RESULTS: Flow cytometry and single-cell RNA sequencing experiments revealed the heterogeneous senescent status of irradiated ECs and allowed to deciphered the molecular program involved in this status. We identified the Interleukin-1 signaling pathway as a key player in the radiation-induced premature senescence of ECs, as well as the endothelial-to-mesenchymal transition process, which shares strong hallmarks of senescence. CONCLUSIONS: Our work provides crucial information on the dynamics of the radiation-induced premature senescence process, the effect of the radiation dose, as well as the molecular program involved in the heterogeneous senescent status of ECs.


Assuntos
Senescência Celular , Células Endoteliais , Animais , Células Endoteliais/patologia , Camundongos , Fenótipo , Transdução de Sinais
7.
iScience ; 25(12): 105482, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36404925

RESUMO

Radiation therapy damages tumors and normal tissues, probably in part through the recruitment of immune cells. Endothelial high-mannose N-glycans are, in particular, involved in monocyte-endothelium interactions. Trimmed by the class I α-mannosidases, these structures are quite rare in normal conditions. Here, we show that the expression of the endothelial α-mannosidase MAN1C1 protein decreases after irradiation. We modeled two crucial steps in monocyte recruitment by developing in vitro real-time imaging models. Inhibition of MAN1C1 expression by siRNA gene silencing increases the abundance of high-mannose N-glycans, improves the adhesion of monocytes on endothelial cells in flow conditions and, in contrast, decreases radiation-induced transendothelial migration of monocytes. Consistently, overexpression of MAN1C1 in endothelial cells using lentiviral vectors decreases the abundance of high-mannose N-glycans and monocyte adhesion and enhances transendothelial migration of monocytes. Hence, we propose a role for endothelial MAN1C1 in the recruitment of monocytes, particularly in the adhesion step to the endothelium.

8.
Front Med (Lausanne) ; 8: 794324, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004768

RESUMO

Lung stereotactic body radiation therapy is characterized by a reduction in target volumes and the use of severely hypofractionated schedules. Preclinical modeling became possible thanks to rodent-dedicated irradiation devices allowing accurate beam collimation and focal lung exposure. Given that a great majority of publications use single dose exposures, the question we asked in this study was as follows: in incremented preclinical models, is it worth using fractionated protocols or should we continue focusing solely on volume limitation? The left lungs of C57BL/6JRj mice were exposed to ionizing radiation using arc therapy and 3 × 3 mm beam collimation. Three-fraction schedules delivered over a period of 1 week were used with 20, 28, 40, and 50 Gy doses per fraction. Lung tissue opacification, global histological damage and the numbers of type II pneumocytes and club cells were assessed 6 months post-exposure, together with the gene expression of several lung cells and inflammation markers. Only the administration of 3 × 40 Gy or 3 × 50 Gy generated focal lung fibrosis after 6 months, with tissue opacification visible by cone beam computed tomography, tissue scarring and consolidation, decreased club cell numbers and a reactive increase in the number of type II pneumocytes. A fractionation schedule using an arc-therapy-delivered three fractions/1 week regimen with 3 × 3 mm beam requires 40 Gy per fraction for lung fibrosis to develop within 6 months, a reasonable time lapse given the mouse lifespan. A comparison with previously published laboratory data suggests that, in this focal lung irradiation configuration, administering a Biological Effective Dose ≥ 1000 Gy should be recommended to obtain lung fibrosis within 6 months. The need for such a high dose per fraction challenges the appropriateness of using preclinical highly focused fractionation schedules in mice.

9.
Int J Radiat Oncol Biol Phys ; 107(3): 548-562, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32278852

RESUMO

PURPOSE: Stereotactic body radiation therapy is a therapeutic option offered to high surgical risk patients with lung cancer. Focal lung irradiation in mice is a new preclinical model to help understand the development of lung damage in this context. Here we developed a mouse model of lung stereotactic therapy using arc delivery and monitored the development of lung damage while varying the beam size and dose delivered. METHODS AND MATERIALS: C57BL/6JRj mice were exposed to 90 Gy focal irradiation on the left lung using 1-mm diameter, 3 × 3 mm2, 7 × 7 mm2, or 10 × 10 mm2 beam collimation for beam size effect and using 3 × 3 mm2 beam collimation delivering 20 to 120 Gy for dose effect. Long-term lung damage was monitored with micro-computed tomography imaging with anatomopathologic and gene expression measurements in the injured patch and the ipsilateral and contralateral lungs. RESULTS: Both 1-mm diameter and 3 × 3 mm2 beam collimation allow long-term studies, but only 3-mm beam collimation generates lung fibrosis when delivering 90 Gy. Dose-effect studies with constant 3-mm beam collimation revealed a dose of 60 Gy as the minimum to obtain lung fibrosis 6 months postexposure. Lung fibrosis development was associated with club cell depletion and increased type II pneumocyte numbers. Lung injury developed with ipsilateral and contralateral consequences such as parenchymal thickening and gene expression modifications. CONCLUSIONS: Arc therapy allows long-term studies and dose escalation without lethality. In our dose-delivery conditions, dose-effect studies revealed that 3 × 3 mm2 beam collimation to a minimum single dose of 60 Gy enables preclinical models for the assessment of lung injury within a 6-month period. This model of lung tissue fibrosis in a time length compatible with mouse life span may offer good prospects for future mechanistic studies.


Assuntos
Pulmão/efeitos da radiação , Radiocirurgia/efeitos adversos , Animais , Bronquiolite/etiologia , Contagem de Células , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Células Epiteliais/patologia , Células Epiteliais/efeitos da radiação , Fibrose , Pulmão/patologia , Masculino , Camundongos , Análise de Sobrevida
10.
Int J Radiat Oncol Biol Phys ; 106(5): 1017-1027, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31987976

RESUMO

PURPOSE: Lung cancer will be treated more frequently using stereotactic body radiation therapy, and preclinical research to model long-term toxicity of ablative doses of radiation is crucial. Stereotactic lung irradiation of a small volume can induce radiation pneumonitis and fibrosis in normal tissues. METHODS AND MATERIALS: Senescence has been reported to contribute to lung fibrosis, and we investigated in vivo the effects of ablative doses of ionizing radiation on senescence-associated processes. The left lung of p16INK4a-LUC knock-in mice was exposed to a single dose or fractionated radiation doses in a millimetric volume using a small animal radiation research platform. RESULTS: Single or fractionated ablative radiation induces acute and very long-term p16INK4a activation in the irradiated lung target volume associated with lung injury. We observed a panel of heterogeneous senescent cells including pneumocytes, macrophages, and endothelial cells that accumulated around the radiation-induced lung focal lesion, suggesting that different senescent cell types may contribute to radiation injury. CONCLUSIONS: This work provides important information on the long-term effects of ablative radiation doses in the normal lung and strongly suggests that stress-induced senescence is involved in stereotactic body radiation therapy-induced late fibrosis.


Assuntos
Senescência Celular/efeitos da radiação , Lesão Pulmonar/patologia , Animais , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Relação Dose-Resposta à Radiação , Células Endoteliais/patologia , Células Endoteliais/efeitos da radiação , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Camundongos , Tomografia Computadorizada por Raios X
11.
Med Sci (Paris) ; 25(3): 267-72, 2009 Mar.
Artigo em Francês | MEDLINE | ID: mdl-19361390

RESUMO

Despite constant progress in radiotherapy techniques such as tumour imaging and cartography, techniques of radiation delivery or fractionation schedules, damage to normal gastro-intestinal tissues is inevitably associated with radiation therapy of pelvic tumours. Acute radiation enteritis concerns 80% of patients. It is related to stem cell loss, default in epithelial regenerating capacity and inflammation-induced mucosal dystrophy and ulceration. Chronic injury may develop in 5 to 10% of patients and is characterized by intestinal wall fibrosis resulting from an exaggerated scarring process, chronic inflammation and tissue necrosis. Research in mechanistic processes of normal tissue damage paved the way for new therapeutic approaches to emerge. These new targets include mucosal regeneration, reduction of vascular activation, inflammation and thrombosis, and fight against mesenchymal cells sustained activation. Effective strategies are multiple on preclinical models, but numerous efforts have to be made to achieve the complicated goal of protection of normal tissues from the side effects of radiation therapy.


Assuntos
Gastroenteropatias/etiologia , Neoplasias/radioterapia , Neoplasias Pélvicas/radioterapia , Lesões por Radiação/epidemiologia , Radioterapia/efeitos adversos , Animais , Enterite/epidemiologia , Humanos , Ratos
12.
Sci Rep ; 9(1): 14328, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586152

RESUMO

Based on classic clonogenic assay, it is accepted by the scientific community that, whatever the energy, the relative biological effectiveness of X-rays is equal to 1. However, although X-ray beams are widely used in diagnosis, interventional medicine and radiotherapy, comparisons of their energies are scarce. We therefore assessed in vitro the effects of low- and high-energy X-rays using Human umbilical vein endothelial cells (HUVECs) by performing clonogenic assay, measuring viability/mortality, counting γ-H2AX foci, studying cell proliferation and cellular senescence by flow cytometry and by performing gene analysis on custom arrays. Taken together, excepted for γ-H2AX foci counts, these experiments systematically show more adverse effects of high energy X-rays, while the relative biological effectiveness of photons is around 1, whatever the quality of the X-ray beam. These results strongly suggest that multiparametric analysis should be considered in support of clonogenic assay.


Assuntos
Histonas/efeitos da radiação , Fótons/efeitos adversos , Eficiência Biológica Relativa , Raios X/efeitos adversos , Sobrevivência Celular/efeitos da radiação , Ensaio de Unidades Formadoras de Colônias , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Marcadores Genéticos/efeitos da radiação , Histonas/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Transferência Linear de Energia , Estudo de Prova de Conceito
13.
Int J Radiat Oncol Biol Phys ; 104(2): 279-290, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30703512

RESUMO

PURPOSE: Stereotactic body radiation therapy offers good lung local tumor control by the administration of a high dose per fraction in small volumes. Stereotactic body radiation therapy preclinical modeling is now possible, and our aim was to develop a model of focal irradiation of the mouse lung and to investigate the impact of conditional hypoxia-inducible factor 1α (HIF-1α) deletion in the endothelium on radiation-induced tissue damage. METHODS AND MATERIALS: The Small Animal Radiation Research Platform was used to create a mouse model of focal irradiation of the lung using arc therapy. HIF-1α conditional deletion was obtained by crossing mice expressing Cre recombinase under the endothelial promoter VE-cadherin (VECad-Cre+/+ mice) with HIF-1α floxed mice. RESULTS: Lung stereotactic arc therapy allows thoracic wall sparing and long-term studies. However, isodose curves showed that neighboring organs received significant doses of radiation, as revealed by ipsilateral lung acute red hepatization and major gene expression level modifications. Conditional HIF-1α deletion reduced acute lung edema and tended to diminish neutrophil infiltrate, but it had no impact on long-term global tissue damage. CONCLUSIONS: Arc therapy for focal high-dose irradiation of mouse lung is an efficient model for long-term studies. However, irradiation may have a strong impact on the structure and function of neighboring organs, which must be considered. HIF-1α conditional deletion has no beneficial impact on lung damage in this irradiation schedule.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Pulmonares/radioterapia , Pulmão/efeitos da radiação , Órgãos em Risco/efeitos da radiação , Radiocirurgia/métodos , Radioterapia de Intensidade Modulada/métodos , Animais , Tomografia Computadorizada de Feixe Cônico , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Deleção de Genes , Hibridização Genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Integrases/metabolismo , Pulmão/diagnóstico por imagem , Camundongos , Órgãos em Risco/diagnóstico por imagem , Fenótipo , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/efeitos da radiação , Edema Pulmonar/prevenção & controle , Fibrose Pulmonar/diagnóstico por imagem , Doses de Radiação , Pneumonite por Radiação/diagnóstico por imagem , Radiocirurgia/efeitos adversos , Radioterapia de Intensidade Modulada/efeitos adversos , Corrida/fisiologia , Seleção Artificial
14.
Med Sci (Paris) ; 34(2): 145-154, 2018 Feb.
Artigo em Francês | MEDLINE | ID: mdl-29451485

RESUMO

Mast cells are immune cells that mature within the host tissue. The acquired phenotype is dictated by the tissue microenvironment, giving rise to diverse tissue-dependent phenotypes and functions. The lack of cellular models reflecting phenotypes found in vivo and important differences between human and rodent mast cells are obstacles to the understanding of their exact role in several pathophysiological processes. Studies published over the past few years showed that mast cells' role lies far beyond their involvement in allergy and anaphylaxis. Studies demonstrating their participation in innate immune responses as well as tissue scaring and vascular pathologies allowed the understanding of their role in several diseases, but also gave contradictory results, especially concerning tissue response to ionizing radiations. Nevertheless, therapeutic tools exist to target mast cells, such as degranulation inhibitors, antihistamine, protease inhibitors or tyrosine kinase receptors antagonists, and may offer some interesting new therapeutic perspectives to manage acute and chronic after-effects of radiation therapy.


Assuntos
Imunidade Inata , Mastócitos/fisiologia , Lesões por Radiação/imunologia , Animais , Humanos , Sistema Imunitário/fisiologia , Sistema Imunitário/efeitos da radiação , Imunidade Inata/fisiologia , Imunidade Inata/efeitos da radiação , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/tendências , Mastócitos/imunologia , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Lesões por Radiação/terapia
15.
Br J Radiol ; 91(1089): 20170762, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29630386

RESUMO

Altered by ionising radiation, the vascular network is considered as a prime target to limit normal tissue damage and improve tumour control in radiotherapy (RT). Irradiation damages and/or activates endothelial cells, which then participate in the recruitment of circulating cells, especially by overexpressing cell adhesion molecules, but also by other as yet unknown mechanisms. Radiation-induced lesions are associated with infiltration of immune-inflammatory cells from the blood and/or the lymph circulation. Damaged cells from the tissues and immune-inflammatory resident cells release factors that attract cells from the circulation, leading to the restoration of tissue balance by fighting against infection, elimination of damaged cells and healing of the injured area. In normal tissues that surround the tumours, the development of an immune-inflammatory reaction in response to radiation-induced tissue injury can turn out to be chronic and deleterious for the organ concerned, potentially leading to fibrosis and/or necrosis of the irradiated area. Similarly, tumours can elicit an immune-inflammation reaction, which can be initialised and amplified by cancer therapy such as radiotherapy, although immune checkpoints often allow many cancers to be protected by inhibiting the T-cell signal. Herein, we have explored the involvement of vascular endothelium in the fate of healthy tissues and tumours undergoing radiotherapy. This review also covers current investigations that take advantage of the radiation-induced response of the vasculature to spare healthy tissue and/or target tumours better.


Assuntos
Endotélio Vascular/fisiopatologia , Imunidade/efeitos da radiação , Lesões por Radiação/fisiopatologia , Radioterapia/efeitos adversos , Apoptose/efeitos da radiação , Endotélio Vascular/imunologia , Endotélio Vascular/efeitos da radiação , Humanos , Radioterapia (Especialidade)
16.
PLoS One ; 13(10): e0204960, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30281653

RESUMO

The vascular endothelium is considered as a key cell compartment for the response to ionizing radiation of normal tissues and tumors, and as a promising target to improve the differential effect of radiotherapy in the future. Following radiation exposure, the global endothelial cell response covers a wide range of gene, miRNA, protein and metabolite expression modifications. Changes occur at the transcriptional, translational and post-translational levels and impact cell phenotype as well as the microenvironment by the production and secretion of soluble factors such as reactive oxygen species, chemokines, cytokines and growth factors. These radiation-induced dynamic modifications of molecular networks may control the endothelial cell phenotype and govern recruitment of immune cells, stressing the importance of clearly understanding the mechanisms which underlie these temporal processes. A wide variety of time series data is commonly used in bioinformatics studies, including gene expression, protein concentrations and metabolomics data. The use of clustering of these data is still an unclear problem. Here, we introduce kernels between Gaussian processes modeling time series, and subsequently introduce a spectral clustering algorithm. We apply the methods to the study of human primary endothelial cells (HUVECs) exposed to a radiotherapy dose fraction (2 Gy). Time windows of differential expressions of 301 genes involved in key cellular processes such as angiogenesis, inflammation, apoptosis, immune response and protein kinase were determined from 12 hours to 3 weeks post-irradiation. Then, 43 temporal clusters corresponding to profiles of similar expressions, including 49 genes out of 301 initially measured, were generated according to the proposed method. Forty-seven transcription factors (TFs) responsible for the expression of clusters of genes were predicted from sequence regulatory elements using the MotifMap system. Their temporal profiles of occurrences were established and clustered. Dynamic network interactions and molecular pathways of TFs and differential genes were finally explored, revealing key node genes and putative important cellular processes involved in tissue infiltration by immune cells following exposure to a radiotherapy dose fraction.


Assuntos
Fracionamento da Dose de Radiação , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Transcriptoma/efeitos da radiação , Análise por Conglomerados , Humanos , Família Multigênica , Distribuição Normal , Fenótipo , Fatores de Tempo , Fatores de Transcrição/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-29276749

RESUMO

BACKGROUND & AIMS: Radiation therapy in the pelvic area is associated with side effects that impact the quality of life of cancer survivors. Interestingly, the gastrointestinal tract is able to adapt to significant changes in oxygen availability, suggesting that mechanisms related to hypoxia sensing help preserve tissue integrity in this organ. However, hypoxia-inducible factor (HIF)-dependent responses to radiation-induced gut toxicity are unknown. Radiation-induced intestinal toxicity is a complex process involving multiple cellular compartments. Here, we investigated whether epithelial or endothelial tissue-specific HIF-1α deletion could affect acute intestinal response to radiation. METHODS: Using constitutive and inducible epithelial or endothelial tissue-specific HIF-1α deletion, we evaluated the consequences of epithelial or endothelial HIF-1α deletion on radiation-induced enteritis after localized irradiation. Survival, radiation-induced tissue injury, molecular inflammatory profile, tissue hypoxia, and vascular injury were monitored. RESULTS: Surprisingly, epithelium-specific HIF-1α deletion does not alter radiation-induced intestinal injury. However, irradiated VECad-Cre+/-HIF-1αFL/FL mice present with lower radiation-induced damage, showed a preserved vasculature, reduced hypoxia, and reduced proinflammatory response compared with irradiated HIF-1αFL/FL mice. CONCLUSIONS: We demonstrate in vivo that HIF-1α impacts radiation-induced enteritis and that this role differs according to the targeted cell type. Our work provides a new role for HIF-1α and endothelium-dependent mechanisms driving inflammatory processes in gut mucosae. Results presented show that effects on normal tissues have to be taken into account in approaches aiming to modulate hypoxia or hypoxia-related molecular mechanisms.

18.
Int J Radiat Biol ; 94(6): 597-606, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29701998

RESUMO

PURPOSE: The main objective of radiobiology is to establish links between doses and radiation-induced biological effects. In this context, well-defined dosimetry protocols are crucial to the determination of experimental protocols. This work proposes a new dosimetry protocol for cell irradiation in a SARRP and shows the importance of the modification of some parameters defined in dosimetry protocol for physical dose and biological outcomes. MATERIALS AND METHODS: Once all parameters of the configuration were defined, dosimetry measurements with ionization chambers and EBT3 films were performed to evaluate the dose rate and the attenuation due to the cell culture medium. To evaluate the influence of changes in cell culture volume and/or additional filtration, 6-well plates containing EBT3 films with water were used to determine the impact on the physical dose at 80 kV. Then, experiments with the same irradiation conditions were performed by replacing EBT3 films by HUVECs. The biological response was assessed using clonogenic assay. RESULTS: Using a 0.15 mm copper filter lead to a variation of +1% using medium thickness of 0.104 cm to -8% using a medium thickness of 0.936 cm on the physical dose compare to the reference condition (0.313 cm). For the 1 mm aluminum filter, a variation of +8 to -40% for the same medium thickness conditions has been observed. Cells irradiated in the same conditions showed significant differences in survival fraction, corroborating the effects of dosimetric changes on physical dose. CONCLUSIONS: This work shows the importance of dosimetry in radiobiology studies and the need of an accurate description of the dosimetry protocol used for irradiation.


Assuntos
Radiometria/instrumentação , Desenho de Equipamento , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos da radiação , Humanos , Raios X
19.
Int J Radiat Oncol Biol Phys ; 68(5): 1471-82, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17674977

RESUMO

PURPOSE: To investigate whether pravastatin mitigates delayed radiation-induced enteropathy in rats, by focusing on the effects of pravastatin on acute cell death and fibrosis according to connective tissue growth factor (CTGF) expression and collagen inhibition. METHODS AND MATERIALS: Mitigation of delayed radiation-induced enteropathy was investigated in rats using pravastatin administered in drinking water (30 mg/kg/day) 3 days before and 14 days after irradiation. The ileum was irradiated locally after surgical exteriorization (X-rays, 19 Gy). Acute apoptosis, acute and late histologic alterations, and late CTGF and collagen deposition were monitored by semiquantitative immunohistochemistry and colorimetric staining (6 h, 3 days, 14 days, 15 weeks, and 26 weeks after irradiation). Pravastatin antitumor action was studied in HT-29, HeLa, and PC-3 cells by clonogenic cell survival assays and tumor growth delay experiments. RESULTS: Pravastatin improved delayed radiation enteropathy in rats, whereas its benefit in acute and subacute injury remained limited (6 h, 3 days, and 14 days after irradiation). Delayed structural improvement was associated with decreased CTGF and collagen deposition but seemed unrelated to acute damage. Indeed, the early apoptotic index increased, and severe subacute structural damage occurred. Pravastatin elicited a differential effect, protecting normal intestine but not tumors from radiation injury. CONCLUSION: Pravastatin provides effective protection against delayed radiation enteropathy without interfering with the primary antitumor action of radiotherapy, suggesting that clinical transfer is feasible.


Assuntos
Apoptose , Íleo/efeitos da radiação , Proteínas Imediatamente Precoces/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pravastatina/uso terapêutico , Lesões Experimentais por Radiação/prevenção & controle , Protetores contra Radiação/uso terapêutico , Animais , Linhagem Celular Tumoral , Colágeno/metabolismo , Colágeno/efeitos da radiação , Fator de Crescimento do Tecido Conjuntivo , Avaliação Pré-Clínica de Medicamentos , Feminino , Fibrose , Células HT29 , Células HeLa , Humanos , Íleo/patologia , Masculino , Camundongos , Camundongos Nus , Lesões Experimentais por Radiação/patologia , Ratos , Ratos Wistar
20.
Int J Radiat Oncol Biol Phys ; 69(5): 1563-71, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18035212

RESUMO

PURPOSE: Acute and/or chronic radiation enteritis can develop after radiotherapy for pelvic cancers. Experimental and clinical observations have provided evidence of a role played by acute mucosal disruption in the appearance of late effects. The therapeutic potential of acute administration of glucagon-like peptide-2 (GLP-2) against acute and chronic intestinal injury was investigated in this study. METHODS AND MATERIALS: Intestinal segments were surgically exteriorized and exposed to 16.7 or 19 Gy X-rays. The rats were treated once daily with vehicle or a protease-resistant GLP-2 derivative for 14 days before irradiation, with or without 7 days of GLP-2 after treatment. Macroscopic and microscopic observations were made 2 and 15 weeks after radiation exposure. RESULTS: In the control animals, GLP-2 induced an increase in intestinal mucosal mass, along with an increase in villus height and crypt depth. GLP-2 administration before and after irradiation completely prevented the acute radiation-induced mucosal ulcerations observed after exposure to 16.7 Gy. GLP-2 treatment strikingly reduced the late radiation damage observed after 19 Gy irradiation. Microscopic observations revealed an improved organization of the intestinal wall and an efficient wound healing process, especially in the smooth muscle layers. CONCLUSION: GLP-2 has a clear therapeutic potential against both acute and chronic radiation enteritis. This therapeutic effect is mediated through an increased mucosal mass before tissue injury and the stimulation of still unknown mechanisms of tissue response to radiation damage. Although these preliminary results still need to be confirmed, GLP-2 might be a way to limit patient discomfort during radiotherapy and reduce the risk of consequential late effects.


Assuntos
Enterite/tratamento farmacológico , Peptídeo 2 Semelhante ao Glucagon/uso terapêutico , Intestino Delgado/efeitos da radiação , Lesões Experimentais por Radiação/tratamento farmacológico , Doença Aguda , Animais , Doença Crônica , Avaliação Pré-Clínica de Medicamentos , Enterite/patologia , Enterite/prevenção & controle , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos da radiação , Intestino Delgado/patologia , Masculino , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/prevenção & controle , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA