Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 106(3): 356-370, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109418

RESUMO

Genetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called "episignatures"). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results. We present here an approach to episignature mapping in 42 genetic syndromes, which has allowed the identification of 34 robust disease-specific episignatures. We examine emerging patterns of overlap, as well as similarities and hierarchical relationships across these episignatures, to highlight their key features as they are related to genetic heterogeneity, dosage effect, unaffected carrier status, and incomplete penetrance. We demonstrate the necessity of multiclass modeling for accurate genetic variant classification and show how disease classification using a single episignature at a time can sometimes lead to classification errors in closely related episignatures. We demonstrate the utility of this tool in resolving ambiguous clinical cases and identification of previously undiagnosed cases through mass screening of a large cohort of subjects with developmental delays and congenital anomalies. This study more than doubles the number of published syndromes with DNA methylation episignatures and, most significantly, opens new avenues for accurate diagnosis and clinical assessment in individuals affected by these disorders.


Assuntos
Metilação de DNA , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Estudos de Coortes , Heterogeneidade Genética , Humanos , Síndrome
2.
Hum Mol Genet ; 29(19): 3197-3210, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-32916696

RESUMO

The most distal 2 kb region in the majority of human subtelomeres contains CpG-rich promoters for TERRA, a long non-coding RNA. When the function of the de novo DNA methyltransferase DNMT3B is disrupted, as in ICF1 syndrome, subtelomeres are abnormally hypomethylated, subtelomeric heterochromatin acquires open chromatin characteristics, TERRA is highly expressed, and telomeres shorten rapidly. In this study, we explored whether the regulation of subtelomeric epigenetic characteristics by DNMT3B is conserved between humans and mice. Studying the DNA sequence of the distal 30 kb of the majority of murine q-arm subtelomeres indicated that these regions are relatively CpG-poor and do not contain TERRA promoters similar to those present in humans. Despite the lack of human-like TERRA promoters, we clearly detected TERRA expression originating from at least seven q-arm subtelomeres, and at higher levels in mouse pluripotent stem cells in comparison with mouse embryonic fibroblasts (MEFs). However, these differences in TERRA expression could not be explained by differential methylation of CpG islands present in the TERRA-expressing murine subtelomeres. To determine whether Dnmt3b regulates the expression of TERRA in mice, we characterized subtelomeric methylation and associated telomeric functions in cells derived from ICF1 model mice. Littermate-derived WT and ICF1 MEFs demonstrated no significant differences in subtelomeric DNA methylation, chromatin modifications, TERRA expression levels, telomere sister chromatid exchange or telomere length. We conclude that the epigenetic characteristics of murine subtelomeres differ substantially from their human counterparts and that TERRA transcription in mice is regulated by factors others than Dnmt3b.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Face/anormalidades , Fibroblastos/patologia , Doenças da Imunodeficiência Primária/patologia , Telômero/fisiologia , Fatores de Transcrição/metabolismo , Animais , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Ligação a DNA/genética , Face/patologia , Fibroblastos/metabolismo , Humanos , Camundongos , Doenças da Imunodeficiência Primária/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Transcrição Gênica , DNA Metiltransferase 3B
3.
Prog Mol Subcell Biol ; 60: 169-201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386876

RESUMO

Centromeres are chromosomal regions that are essential for the faithful transmission of genetic material through each cell division. They represent the chromosomal platform on which assembles a protein complex, the kinetochore, which mediates attachment to the mitotic spindle. In most organisms, centromeres assemble on large arrays of tandem satellite repeats, although their DNA sequences and organization are highly divergent among species. It has become evident that centromeres are not defined by underlying DNA sequences, but are instead epigenetically defined by the deposition of the centromere-specific histone H3 variant, CENP-A. In addition, and although long regarded as silent chromosomal loci, centromeres are in fact transcriptionally competent in most species, yet at low levels in normal somatic cells, but where the resulting transcripts participate in centromere architecture, identity, and function. In this chapter, we discuss the various roles proposed for centromere transcription and their transcripts, and the potential molecular mechanisms involved. We also discuss pathological cases in which unscheduled transcription of centromeric repeats or aberrant accumulation of their transcripts are pathological signatures of chromosomal instability diseases. In sum, tight regulation of centromeric satellite repeats transcription is critical for healthy development and tissue homeostasis, and thus prevents the emergence of disease states.


Assuntos
Centrômero , Cromatina , Centrômero/genética , Proteína Centromérica A/genética , Cinetocoros , Transcrição Gênica/genética
4.
Int J Mol Sci ; 22(7)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916664

RESUMO

DNA methylation (DNAme) profiling is used to establish specific biomarkers to improve the diagnosis of patients with inherited neurodevelopmental disorders and to guide mutation screening. In the specific case of mendelian disorders of the epigenetic machinery, it also provides the basis to infer mechanistic aspects with regard to DNAme determinants and interplay between histone and DNAme that apply to humans. Here, we present comparative methylomes from patients with mutations in the de novo DNA methyltransferases DNMT3A and DNMT3B, in their catalytic domain or their N-terminal parts involved in reading histone methylation, or in histone H3 lysine (K) methylases NSD1 or SETD2 (H3 K36) or KMT2D/MLL2 (H3 K4). We provide disease-specific DNAme signatures and document the distinct consequences of mutations in enzymes with very similar or intertwined functions, including at repeated sequences and imprinted loci. We found that KMT2D and SETD2 germline mutations have little impact on DNAme profiles. In contrast, the overlapping DNAme alterations downstream of NSD1 or DNMT3 mutations underlines functional links, more specifically between NSD1 and DNMT3B at heterochromatin regions or DNMT3A at regulatory elements. Together, these data indicate certain discrepancy with the mechanisms described in animal models or the existence of redundant or complementary functions unforeseen in humans.


Assuntos
Metilação de DNA/genética , Doenças Genéticas Inatas/genética , Histonas/genética , Mutação , Doenças Raras/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Proteínas de Ligação a DNA/genética , Doenças Genéticas Inatas/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Proteínas de Neoplasias/genética , Doenças Raras/metabolismo , DNA Metiltransferase 3B
5.
Hum Mol Genet ; 27(20): 3568-3581, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30010917

RESUMO

Human telomeres and adjacent subtelomeres are packaged as heterochromatin. Subtelomeric DNA undergoes methylation during development by DNA methyltransferase 3B (DNMT3B), including the CpG-rich promoters of the long non-coding RNA (TERRA) embedded in these regions. The factors that direct DNMT3B methylation to human subtelomeres and maintain this methylation throughout lifetime are yet unknown. The importance of subtelomeric methylation is manifested through the abnormal telomeric phenotype in Immunodeficiency, Centromeric instability and Facial anomalies (ICF) syndrome type 1 patients carrying mutations in DNMT3B. Patient cells demonstrate subtelomeric hypomethylation, accompanied by elevated TERRA transcription, accelerated telomere shortening and premature senescence of fibroblasts. ICF syndrome can arise due to mutations in at least three additional genes, ZBTB24 (ICF2), CDCA7 (ICF3) and HELLS (ICF4). While pericentromeric repeat hypomethylation is evident in all ICF syndrome subtypes, the status of subtelomeric DNA methylation had not been described for patients of subtypes 2-4. Here we explored the telomeric phenotype in cells derived from ICF2-4 patients with the aim to determine whether ZBTB24, CDCA7 and HELLS also play a role in establishing and/or maintaining human subtelomeric methylation. We found normal subtelomeric methylation in ICF2-4 and accordingly low TERRA levels and unperturbed telomere length. Moreover, depleting the ICF2-4-related proteins in normal fibroblasts did not influence subtelomeric methylation. Thus, these gene products are not involved in establishing or maintaining subtelomeric methylation. Our findings indicate that human subtelomeric heterochromatin has specialized methylation regulation and highlight the telomeric phenotype as a characteristic that distinguishes ICF1 from ICF2-4.


Assuntos
Anormalidades Múltiplas/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA Helicases/genética , Metilação de DNA , Mutação , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Anormalidades Múltiplas/metabolismo , Adolescente , Adulto , Linhagem Celular , Centrômero , Criança , Pré-Escolar , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Helicases/metabolismo , Face/anormalidades , Fibroblastos , Heterocromatina/metabolismo , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/metabolismo , Lactente , Recém-Nascido , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Telômero/metabolismo , Adulto Jovem , DNA Metiltransferase 3B
6.
Hum Mol Genet ; 27(14): 2409-2424, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29659838

RESUMO

Alterations of DNA methylation landscapes and machinery are a hallmark of many human diseases. A prominent case is the ICF syndrome, a rare autosomal recessive immunological/neurological disorder diagnosed by the loss of DNA methylation at (peri)centromeric repeats and its associated chromosomal instability. It is caused by mutations in the de novo DNA methyltransferase DNMT3B in about half of the patients (ICF1). In the remainder, the striking identification of mutations in factors devoid of DNA methyltransferase activity, ZBTB24 (ICF2), CDCA7 (ICF3) or HELLS (ICF4), raised key questions about common or distinguishing DNA methylation alterations downstream of these mutations and hence, about the functional link between the four factors. Here, we established the first comparative methylation profiling in ICF patients with all four genotypes and we provide evidence that, despite unifying hypomethylation of pericentromeric repeats and a few common loci, methylation profiling clearly distinguished ICF1 from ICF2, 3 and 4 patients. Using available genomic and epigenomic annotations to characterize regions prone to loss of DNA methylation downstream of ICF mutations, we found that ZBTB24, CDCA7 and HELLS mutations affect CpG-poor regions with heterochromatin features. Among these, we identified clusters of coding and non-coding genes mostly expressed in a monoallelic manner and implicated in neuronal development, consistent with the clinical spectrum of these patients' subgroups. Hence, beyond providing blood-based biomarkers of dysfunction of ICF factors, our comparative study unveiled new players to consider at certain heterochromatin regions of the human genome.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , DNA Helicases/genética , Síndromes de Imunodeficiência/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Instabilidade Cromossômica/genética , Metilação de DNA/genética , Feminino , Genoma Humano/genética , Genótipo , Heterocromatina/genética , Humanos , Síndromes de Imunodeficiência/fisiopatologia , Masculino , Mutação , Neurogênese/genética , DNA Metiltransferase 3B
7.
RNA Biol ; 17(12): 1707-1720, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32559119

RESUMO

The findings that an RNA is not necessarily either coding or non-coding, or that a precursor RNA can produce different types of mature RNAs, whether coding or non-coding, long or short, have challenged the dichotomous view of the RNA world almost 15 years ago. Since then, and despite an increasing number of studies, the diversity of information that can be conveyed by RNAs is rarely searched for, and when it is known, it remains largely overlooked in further functional studies. Here, we provide an update with prominent examples of multiple functions that are carried by the same RNA or are produced by the same precursor RNA, to emphasize their biological relevance in most living organisms. An important consequence is that the overall function of their locus of origin results from the balance between various RNA species with distinct functions and fates. The consideration of the molecular basis of this multiplicity of information is obviously crucial for downstream functional studies when the targeted functional molecule is often not the one that is believed.


Assuntos
Regulação da Expressão Gênica , RNA/genética , Animais , Evolução Molecular , Éxons , Humanos , Íntrons , Fases de Leitura Aberta , Splicing de RNA , RNA Circular , RNA não Traduzido/genética
9.
Clin Genet ; 95(2): 210-220, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30456829

RESUMO

Alterations in epigenetic landscapes are hallmarks of many complex human diseases, yet, it is often challenging to assess the underlying mechanisms and causal link with clinical manifestations. In this regard, monogenic diseases that affect actors of the epigenetic machinery are of considerable interest to learn more about the etiology of complex traits. Spectacular breakthroughs in medical genetics are largely the result of advances in genome-wide approaches to identify genomic and epigenomic alterations in patients. These approaches have enabled the identification of an ever-increasing number of hereditary disorders caused by defects in the establishment of epigenetic marks early during development or in the perpetuation of such marks at later stages. We focus our review on particular cases where DNA methylation landscapes are altered at the genome scale, whether it is a direct consequence of mutations in DNA methyltransferases (DNMT) or that it reflects initial alterations of chromatin states or guiding factors caused by mutations in chromatin modifiers or transcription factors. Collectively, increased knowledge of these rare diseases will add to our understanding of the genetic determinants of DNA methylation in humans. Moreover, investigating how perturbations to these determinants affect genome function has far-reaching potential to understand various complex human diseases.


Assuntos
Metilação de DNA , Epigênese Genética , Predisposição Genética para Doença , Doenças Raras/genética , Animais , Cromatina/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Regulação da Expressão Gênica , Estudos de Associação Genética , Marcadores Genéticos , Humanos , Mutação , Doenças Raras/diagnóstico , Fatores de Transcrição/metabolismo
10.
Nucleic Acids Res ; 45(8): 4768-4781, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28053119

RESUMO

Introns represent almost half of the human genome, although they are eliminated from transcripts through RNA splicing. Yet, different classes of non-canonical miRNAs have been proposed to originate directly from intron splicing. Here, we considered the alternative splicing of introns as an interesting source of miRNAs, compatible with a developmental switch. We report computational prediction of new Short Intron-Derived ncRNAs (SID), defined as precursors of smaller ncRNAs like miRNAs and snoRNAs produced directly by splicing, and tested their dependence on each key factor in canonical or alternative miRNAs biogenesis (Drosha, DGCR8, DBR1, snRNP70, U2AF65, PRP8, Dicer, Ago2). We found that about half of predicted SID rely on debranching of the excised intron-lariat by the enzyme DBR1, as proposed for mirtrons. However, we identified new classes of SID for which miRNAs biogenesis may rely on intermingling between canonical and alternative pathways. We validated selected SID as putative miRNAs precursors and identified new endogenous miRNAs produced by non-canonical pathways, including one hosted in the first intron of SRA (Steroid Receptor RNA activator). Consistent with increased SRA intron retention during myogenic differentiation, release of SRA intron and its associated mature miRNA decreased in cells from healthy subjects but not from myotonic dystrophy patients with splicing defects.


Assuntos
Íntrons/genética , MicroRNAs/genética , RNA não Traduzido/genética , Processamento Alternativo/genética , Biologia Computacional , Genoma Humano , Humanos , MicroRNAs/biossíntese , Precursores de RNA/genética
11.
Nucleic Acids Res ; 45(10): 5739-5756, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28334849

RESUMO

Hypomorphic mutations in DNA-methyltransferase DNMT3B cause majority of the rare disorder Immunodeficiency, Centromere instability and Facial anomalies syndrome cases (ICF1). By unspecified mechanisms, mutant-DNMT3B interferes with lymphoid-specific pathways resulting in immune response defects. Interestingly, recent findings report that DNMT3B shapes intragenic CpG-methylation of highly-transcribed genes. However, how the DNMT3B-dependent epigenetic network modulates transcription and whether ICF1-specific mutations impair this process remains unknown. We performed a transcriptomic and epigenomic study in patient-derived B-cell lines to investigate the genome-scale effects of DNMT3B dysfunction. We highlighted that altered intragenic CpG-methylation impairs multiple aspects of transcriptional regulation, like alternative TSS usage, antisense transcription and exon splicing. These defects preferentially associate with changes of intragenic H3K4me3 and at lesser extent of H3K27me3 and H3K36me3. In addition, we highlighted a novel DNMT3B activity in modulating the self-regulatory circuit of sense-antisense pairs and the exon skipping during alternative splicing, through interacting with RNA molecules. Strikingly, altered transcription affects disease relevant genes, as for instance the memory-B cell marker CD27 and PTPRC genes, providing us with biological insights into the ICF1-syndrome pathogenesis. Our genome-scale approach sheds light on the mechanisms still poorly understood of the intragenic function of DNMT3B and DNA methylation in gene expression regulation.


Assuntos
Processamento Alternativo , Anorexia/genética , Caquexia/genética , DNA (Citosina-5-)-Metiltransferases/genética , Anormalidades do Olho/genética , Histonas/genética , Síndromes de Imunodeficiência/genética , Mutação , RNA Mensageiro/genética , Dermatopatias/genética , Anorexia/imunologia , Anorexia/patologia , Linfócitos B/imunologia , Linfócitos B/patologia , Caquexia/imunologia , Caquexia/patologia , Linhagem Celular Transformada , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/imunologia , Metilação de DNA , Epigênese Genética , Anormalidades do Olho/imunologia , Anormalidades do Olho/patologia , Fácies , Feminino , Histonas/imunologia , Humanos , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/patologia , Memória Imunológica , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/imunologia , Masculino , Regiões Promotoras Genéticas , RNA Mensageiro/imunologia , Dermatopatias/imunologia , Dermatopatias/patologia , Transcrição Gênica , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , DNA Metiltransferase 3B
12.
J Clin Immunol ; 36(2): 149-59, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26851945

RESUMO

PURPOSE: Autosomal recessive deficiencies of DNMT3B or ZBTB24 account for two-thirds of cases of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome). This primary immunodeficiency (PID) is characterized mainly by an antibody deficiency, facial abnormalities and centromeric instability. We analyzed the national cohort of patients with ICF syndrome with the aim of providing a more detailed description of the phenotype and management of patients with ICF syndrome. METHODS: Demographic, genetic, immunological, and clinical features were recorded for each patient. RESULTS: In the French cohort, seven of the nine patients carried DNMT3B mutations, six of which had never been described before. One patient had compound heterozygous ZBTB24 mutations. All patients were found to lack CD19(+)CD27(+) memory B cells. This feature is a major diagnostic criterion for both ICF1 and ICF2. Patients suffered both bacterial and viral infections, and three patients developed bronchiectasis. Autoimmune manifestations (hepatitis, nephritis and thyroiditis) not previously reported in ICF1 patients were also detected in two of our ICF1 patients. The mode of treatment and outcome of the French patients are reported, by genetic defect, and compared with those for 68 previously reported ICF patients. Immunoglobulin (Ig) replacement treatment was administered to all nine French patients. One ICF1 patient presented severe autoimmune manifestations and pancytopenia and underwent allogeneic hematopoietic stem cell transplantation (HSCT), but she died from unknown causes 6 years post-transplant. CONCLUSION: Autoimmune signs are uncommon in ICF syndrome, but, when present, they affect patient outcome and require immunosuppressive treatment. The long-term outcome of ICF patients has been improved by the combination of IgG replacement and antibiotic prophylaxis.


Assuntos
Predisposição Genética para Doença , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/etiologia , Fenótipo , Autoimunidade , Criança , Pré-Escolar , Gerenciamento Clínico , Feminino , França/epidemiologia , Testes Genéticos , Humanos , Síndromes de Imunodeficiência/epidemiologia , Síndromes de Imunodeficiência/terapia , Testes Imunológicos , Lactente , Recém-Nascido , Infecções/etiologia , Masculino , Mutação , Avaliação de Resultados em Cuidados de Saúde , Vigilância da População
13.
Int J Mol Sci ; 16(3): 4429-52, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25710723

RESUMO

Introns represent almost half of the human genome, yet their vast majority is eliminated from eukaryotic transcripts through RNA splicing. Nevertheless, they feature key elements and functions that deserve further interest. At the level of DNA, introns are genomic segments that can shelter independent transcription units for coding and non-coding RNAs which transcription may interfere with that of the host gene, and regulatory elements that can influence gene expression and splicing itself. From the RNA perspective, some introns can be subjected to alternative splicing. Intron retention appear to provide some plasticity to the nature of the protein produced, its distribution in a given cell type and timing of its translation. Intron retention may also serve as a switch to produce coding or non-coding RNAs from the same transcription unit. Conversely, splicing of introns has been directly implicated in the production of small regulatory RNAs. Hence, splicing of introns also appears to provide plasticity to the type of RNA produced from a genetic locus (coding, non-coding, short or long). We addressed these aspects to add to our understanding of mechanisms that control the fate of introns and could be instrumental in regulating genomic output and hence cell fate.


Assuntos
Processamento Alternativo , Genoma/genética , Íntrons/genética , RNA Mensageiro/genética , Animais , Éxons/genética , Regulação da Expressão Gênica , Variação Genética , Humanos , Modelos Genéticos
14.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376465

RESUMO

DNA methylation (DNAme) is a key epigenetic mark that regulates critical biological processes maintaining overall genome stability. Given its pleiotropic function, studies of DNAme dynamics are crucial, but currently available tools to interfere with DNAme have limitations and major cytotoxic side effects. Here, we present cell models that allow inducible and reversible DNAme modulation through DNMT1 depletion. By dynamically assessing whole genome and locus-specific effects of induced passive demethylation through cell divisions, we reveal a cooperative activity between DNMT1 and DNMT3B, but not of DNMT3A, to maintain and control DNAme. We show that gradual loss of DNAme is accompanied by progressive and reversible changes in heterochromatin, compartmentalization, and peripheral localization. DNA methylation loss coincides with a gradual reduction of cell fitness due to G1 arrest, with minor levels of mitotic failure. Altogether, this system allows DNMTs and DNA methylation studies with fine temporal resolution, which may help to reveal the etiologic link between DNAme dysfunction and human disease.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , DNA Metiltransferase 3A , Epigenômica , Humanos , Divisão Celular , Heterocromatina/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA Metiltransferase 3A/genética , Linhagem Celular
15.
J Hum Genet ; 58(7): 455-60, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23739126

RESUMO

Immunodeficiency, centromeric instability and facial anomalies (ICF) syndrome is a rare autosomal recessive disorder that shows DNA hypomethylation at pericentromeric satellite-2 and -3 repeats in chromosomes 1, 9 and 16. ICF syndrome is classified into two groups: type 1 (ICF1) patients have mutations in the DNMT3B gene and about half of type 2 (ICF2) patients have mutations in the ZBTB24 gene. Besides satellite-2 and -3 repeats, α-satellite repeats are also hypomethylated in ICF2. In this study, we report three novel ZBTB24 mutations in ICF2. A Japanese patient was homozygous for a missense mutation (C383Y), and a Cape Verdean patient was compound heterozygous for a nonsense mutation (K263X) and a frame-shift mutation (C327W fsX54). In addition, the second Japanese patient was homozygous for a previously reported nonsense mutation (R320X). The C383Y mutation abolished a C2H2 motif in one of the eight zinc-finger domains, and the other three mutations caused a complete or large loss of the zinc-finger domains. Our immunofluorescence analysis revealed that mouse Zbtb24 proteins possessing a mutation corresponding to either C383Y or R320X are mislocalized from pericentrometic heterochromatin, suggesting the importance of the zinc-finger domains in proper intranuclear localization of this protein. We further revealed that the proper localization of wild-type Zbtb24 protein does not require DNA methylation.


Assuntos
Povo Asiático/genética , População Negra/genética , Face/anormalidades , Síndromes de Imunodeficiência/genética , Proteínas Repressoras/genética , Adolescente , Adulto , Animais , Linhagem Celular , Centrômero/metabolismo , Pré-Escolar , Aberrações Cromossômicas , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 1/metabolismo , Cromossomos Humanos Par 16/genética , Clonagem Molecular , Metilação de DNA , Feminino , Genômica , Humanos , Síndromes de Imunodeficiência/diagnóstico , Masculino , Camundongos , Mutação , Células NIH 3T3 , Doenças da Imunodeficiência Primária , Proteínas Recombinantes de Fusão/genética , Análise de Sequência , Dedos de Zinco/genética
16.
Nucleic Acids Res ; 39(2): 513-25, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20855289

RESUMO

The steroid receptor RNA activator (SRA) has the unusual property to function as both a non-coding RNA (ncRNA) and a protein SRAP. SRA ncRNA is known to increase the activity of a range of nuclear receptors as well as the master regulator of muscle differentiation MyoD. The contribution of SRA to either a ncRNA or a protein is influenced by alternative splicing of the first intron, the retention of which disrupts the SRAP open reading frame. We reported here that the ratio between non-coding and coding SRA isoforms increased during myogenic differentiation of human satellite cells but not myotonic dystrophy patient satellite cells, in which differentiation capacity is affected. Using constructs that exclusively produce SRA ncRNA or SRAP, we demonstrated that whereas SRA ncRNA was indeed an enhancer of myogenic differentiation and myogenic conversion of non-muscle cells through the co-activation of MyoD activity, SRAP prevented this SRA RNA-dependant co-activation. Interestingly, the SRAP inhibitory effect is mediated through the interaction of SRAP with its RNA counterpart via its RRM-like domain interacting with the functional sub-structure of SRA RNA, STR7. This study thus provides a new model for SRA-mediated regulation of MyoD transcriptional activity in the promotion of normal muscle differentiation, which takes into account the nature of SRA molecules present.


Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Desenvolvimento Muscular/genética , Proteína MyoD/metabolismo , RNA não Traduzido/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular/genética , Linhagem Celular , Células Cultivadas , Bases de Dados Genéticas , Variação Genética , Humanos , Camundongos , Distrofia Miotônica/genética , Ligação Proteica , Interferência de RNA , RNA Longo não Codificante , RNA não Traduzido/antagonistas & inibidores , RNA não Traduzido/química , Células Satélites de Músculo Esquelético/citologia
17.
Proc Natl Acad Sci U S A ; 107(20): 9281-6, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20439742

RESUMO

Methylation of cytosine residues within the CpG dinucleotide in mammalian cells is an important mediator of gene expression, genome stability, X-chromosome inactivation, genomic imprinting, chromatin structure, and embryonic development. The majority of CpG sites in mammalian cells is methylated in a nonrandom fashion, raising the question of how DNA methylation is distributed along the genome. Here, we focused on the functions of DNA methyltransferase-3b (Dnmt3b), of which deregulated activity is linked to several human pathologies. We generated Dnmt3b hypomorphic mutant mice with reduced catalytic activity, which first revealed a deregulation of Hox genes expression, consistent with the observed homeotic transformations of the posterior axis. In addition, analysis of deregulated expression programs in Dnmt3b mutant embryos, using DNA microarrays, highlighted illegitimate activation of several germ-line genes in somatic tissues that appeared to be linked directly to their hypomethylation in mutant embryos. We provide evidence that these genes are direct targets of Dnmt3b. Moreover, the recruitment of Dnmt3b to their proximal promoter is dependant on the binding of the E2F6 transcriptional repressor, which emerges as a common hallmark in the promoters of genes found to be up-regulated as a consequence of impaired Dnmt3b activity. Therefore, our results unraveled a coordinated regulation of genes involved in meiosis, through E2F6-dependant methylation and transcriptional silencing in somatic tissues.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Fator de Transcrição E2F6/metabolismo , Inativação Gênica/fisiologia , Meiose/genética , Proteínas Repressoras/metabolismo , Animais , Western Blotting , Imunoprecipitação da Cromatina , Ilhas de CpG/genética , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Mutantes , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , DNA Metiltransferase 3B
18.
Noncoding RNA ; 8(5)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36287115

RESUMO

Pseudouridylation is one of the most abundant modifications found in RNAs. To identify the Pseudouridylation sites (Psi) in RNAs, several techniques have been developed, but the most common and robust is the CMC (N-cyclohexyl-N'-(2-morpholinoethyl)carbodiimide) treatment, which consists in the addition of an adduct on Psi that inhibits the reverse transcription. Here, we describe a turnkey method and a tool to design the bridging oligo (DBO), which is somewhat difficult to design. Finally, we propose a trouble-shooting guide to help users.

19.
FEBS J ; 289(7): 1858-1875, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34739170

RESUMO

Cell cycle progression requires control of the abundance of several proteins and RNAs over space and time to properly transit from one phase to the next and to ensure faithful genomic inheritance in daughter cells. The proteasome, the main protein degradation system of the cell, facilitates the establishment of a proteome specific to each phase of the cell cycle. Its activity also strongly influences transcription. Here, we detected the upregulation of repetitive RNAs upon proteasome inhibition in human cancer cells using RNA-seq. The effect of proteasome inhibition on centromeres was remarkable, especially on α-Satellite RNAs. We showed that α-Satellite RNAs fluctuate along the cell cycle and interact with members of the cohesin ring, suggesting that these transcripts may take part in the regulation of mitotic progression. Next, we forced exogenous overexpression and used gapmer oligonucleotide targeting to demonstrate that α-Sat RNAs have regulatory roles in mitosis. Finally, we explored the transcriptional regulation of α-Satellite DNA. Through in silico analyses, we detected the presence of CCAAT transcription factor-binding motifs within α-Satellite centromeric arrays. Using high-resolution three-dimensional immuno-FISH and ChIP-qPCR, we showed an association between the α-Satellite upregulation and the recruitment of the transcription factor NFY-A to the centromere upon MG132-induced proteasome inhibition. Together, our results show that the proteasome controls α-Satellite RNAs associated with the regulation of mitosis.


Assuntos
Complexo de Endopeptidases do Proteassoma , RNA Satélite , Centrômero/genética , Centrômero/metabolismo , DNA Satélite/genética , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Satélite/genética , Regulação para Cima
20.
Nucleic Acids Res ; 37(15): 5071-80, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19542185

RESUMO

Non-coding RNAs are emerging as key players in many fundamental biological processes, including specification of higher-order chromatin structure. We examined the implication of RNA transcribed from mouse centromeric minor satellite repeats in the formation and function of centromere-associated complexes. Here we show that the levels of minor satellite RNA vary during cell-cycle progression, peaking in G2/M phase, concomitant with accumulation of proteins of the chromosomal passenger complex near the centromere. Consistent with this, we describe that murine minor satellite RNA are components of CENP-A-associated centromeric fractions and associate with proteins of the chromosomal passenger complex Aurora B and Survivin at the onset of mitosis. Interactions of endogenous Aurora B with CENP-A and Survivin are sensitive to RNaseA. Likewise, the kinase activity of Aurora B requires an RNA component. More importantly, Aurora B kinase activity can be potentiated by minor satellite RNA. In addition, decreased Aurora B activity after RNA depletion can be specifically rescued by restitution of these transcripts. Together, our data provide new functional evidence for minor satellite transcripts as key partners and regulators of the mitotic kinase Aurora B.


Assuntos
Centrômero/química , Cromatina/química , Proteínas Serina-Treonina Quinases/metabolismo , RNA não Traduzido/metabolismo , Animais , Aurora Quinase B , Aurora Quinases , Autoantígenos/análise , Ciclo Celular/genética , Linhagem Celular , Proteína Centromérica A , Proteínas Cromossômicas não Histona/análise , DNA Satélite , Proteínas Inibidoras de Apoptose , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose/genética , RNA não Traduzido/análise , Proteínas Repressoras , Survivina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA