Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064543

RESUMO

Recent research into miniaturized illumination sources has prompted the development of alternative microscopy techniques. Although they are still being explored, emerging nano-light-emitting-diode (nano-LED) technologies show promise in approaching the optical resolution limit in a more feasible manner. This work presents the exploration of their capabilities with two different prototypes. In the first version, a resolution of less than 1 µm was shown thanks to a prototype based on an optically downscaled LED using an LED scanning transmission optical microscopy (STOM) technique. This research demonstrates how this technique can be used to improve STOM images by oversampling the acquisition. The second STOM-based microscope was fabricated with a 200 nm GaN LED. This demonstrates the possibilities for the miniaturization of on-chip-based microscopes.

2.
Opt Express ; 28(13): 19044-19057, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32672190

RESUMO

In lensless microscopy, spatial resolution is usually provided by the pixel density of current digital cameras, which are reaching a hard-to-surpass pixel size / resolution limit over 1 µm. As an alternative, the dependence of the resolving power can be moved from the detector to the light sources, offering a new kind of lensless microscopy setups. The use of continuously scaled-down Light-Emitting Diode (LED) arrays to scan the sample allows resolutions on order of the LED size, giving rise to compact and low-cost microscopes without mechanical scanners or optical accessories. In this paper, we present the operation principle of this new approach to lensless microscopy, with simulations that demonstrate the possibility to use it for super-resolution, as well as a first prototype. This proof-of-concept setup integrates an 8 × 8 array of LEDs, each 5 × 5 µm2 pixel size and 10 µm pitch, and an optical detector. We characterize the system using Electron-Beam Lithography (EBL) pattern. Our prototype validates the imaging principle and opens the way to improve resolution by further miniaturizing the light sources.

3.
Sensors (Basel) ; 19(3)2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30678225

RESUMO

We describe the integration of techniques and technologies to develop a Point-of-Care for molecular diagnosis PoC-MD, based on a fluorescence lifetime measurement. Our PoC-MD is a low-cost, simple, fast, and easy-to-use general-purpose platform, aimed at carrying out fast diagnostics test through label detection of a variety of biomarkers. It is based on a 1-D array of 10 ultra-sensitive Single-Photon Avalanche Diode (SPAD) detectors made in a 0.18 µm High-Voltage Complementary Metal Oxide Semiconductor (HV-CMOS) technology. A custom microfluidic polydimethylsiloxane cartridge to insert the sample is straightforwardly positioned on top of the SPAD array without any alignment procedure with the SPAD array. Moreover, the proximity between the sample and the gate-operated SPAD sensor makes unnecessary any lens or optical filters to detect the fluorescence for long lifetime fluorescent dyes, such as quantum dots. Additionally, the use of a low-cost laser diode as pulsed excitation source and a Field-Programmable Gate Array (FPGA) to implement the control and processing electronics, makes the device flexible and easy to adapt to the target label molecule by only changing the laser diode. Using this device, reliable and sensitive real-time proof-of-concept fluorescence lifetime measurement of quantum dot QdotTM 605 streptavidin conjugate is demonstrated.


Assuntos
Microfluídica , Técnicas de Diagnóstico Molecular/instrumentação , Fótons , Testes Imediatos , Semicondutores , Desenho de Equipamento , Fluorescência , Corantes Fluorescentes/química , Óxidos
4.
Micromachines (Basel) ; 12(5)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066638

RESUMO

The recent advances in chip-size microscopy based on optical scanning with spatially resolved nano-illumination light sources are presented. This new straightforward technique takes advantage of the currently achieved miniaturization of LEDs in fully addressable arrays. These nano-LEDs are used to scan the sample with a resolution comparable to the LED sizes, giving rise to chip-sized scanning optical microscopes without mechanical parts or optical accessories. The operation principle and the potential of this new kind of microscope are analyzed through three different implementations of decreasing LED dimensions from 20 µm down to 200 nm.

5.
IEEE Trans Biomed Circuits Syst ; 13(2): 343-351, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30640628

RESUMO

Time-resolved fluorescence measurement is extraordinarily powerful in the analysis of substances due to its effectiveness in eliminating measurement artifacts. Some fluorescence measurements are still conducted on CMOS chips with the decay times determined after reading the data off the chip and fitting the fluorescence decay histogram. We present a novel approach in which an analog CMOS chip divides the fluorescence decay time into slices and classifies the photons according to their arrival times at a CMOS SPAD sensor. The chip was fabricated in a 1P6M 0.18 µm HV-CMOS process. The slice timings can be tailored from 168 ps to 4.9 ns, covering most fluorescence decay times. 9 timing windows are generated per pixel that count up to 13 b each, with a resolution of 0.16 mV/photon, for a maximum output voltage of 1.3 V, in an area of 150 µm × 50 µm. Here, we report on the first practical application of this circuit, which integrates an array of 5 pixels in a single chip and has an excitation light and a microfluidic chip of up to 3 channels. This system could determine the decay time of quantum dots in 20 nl of solution. Thus, this paper could help in the development of a point-of-care device based on time-resolved fluorescence.


Assuntos
Fótons , Semicondutores , Eletricidade , Fluorescência , Processamento de Sinais Assistido por Computador , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA