Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharmacol ; 100(3): 237-257, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34127538

RESUMO

Ion channels are attractive drug targets for many therapeutic applications. However, high-throughput screening (HTS) of drug candidates is difficult and remains very expensive. We thus assessed the suitability of the bioluminescence resonance energy transfer (BRET) technique as a new HTS method for ion-channel studies by taking advantage of our recently characterized intra- and intermolecular BRET probes targeting the transient receptor potential vanilloid type 1 (TRPV1) ion channel. These BRET probes monitor conformational changes during TRPV1 gating and subsequent coupling with calmodulin, two molecular events that are intractable using reference techniques such as automated calcium assay (ACA) and automated patch-clamp (APC). We screened the small-sized Prestwick chemical library, encompassing 1200 compounds with high structural diversity, using either intra- and intermolecular BRET probes or ACA. Secondary screening of the detected hits was done using APC. Multiparametric analysis of our results shed light on the capability of calmodulin inhibitors included in the Prestwick library to inhibit TRPV1 activation by capsaicin. BRET was the lead technique for this identification process. Finally, we present data exemplifying the use of intramolecular BRET probes to study other transient receptor potential (TRP) channels and non-TRPs ion channels. Knowing the ease of use of BRET biosensors and the low cost of the BRET technique, these assays may advantageously be included for extending ion-channel drug screening. SIGNIFICANCE STATEMENT: This study screened a chemical library against TRPV1 ion channel using bioluminescence resonance energy transfer (BRET) molecular probes and compared the results with the ones obtained using reference techniques such as automated calcium assay and automated patch-clamp. Multiparametric analysis of our results shed light on the capability of calmodulin antagonists to inhibit chemical activation of TRPV1 and indicates that BRET probes may advantageously be included in ion channel drug screening campaigns.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Canais de Cátion TRPV/metabolismo , Bioensaio/métodos , Cálcio/química , Calmodulina/antagonistas & inibidores , Células HEK293 , Humanos , Ligantes , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp , Bibliotecas de Moléculas Pequenas , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores
2.
J Neurochem ; 85(3): 768-78, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12694403

RESUMO

Human M1 muscarinic receptor chimeras were designed (i) to allow detection of their interaction with the fluorescent antagonist pirenzepine labelled with Bodipy [558/568], through fluorescence resonance energy transfer, (ii) to investigate the structure of the N-terminal extracellular moiety of the receptor and (iii) to set up a fluorescence-based assay to identify new muscarinic ligands. Enhanced green (or yellow) fluorescent protein (EGFP or EYFP) was fused, through a linker, to a receptor N-terminus of variable length so that the GFP barrel was separated from the receptor first transmembrane domain by six to 33 amino-acids. Five fluorescent constructs exhibit high expression levels as well as pharmacological and functional properties superimposable on those of the native receptor. Bodipy-pirenzepine binds to the chimeras with similar kinetics and affinities, indicating a similar mode of interaction of the ligand with all of them. From the variation in energy transfer efficiencies determined for four different receptor-ligand complexes, relative donor (EGFP)-acceptor (Bodipy) distances were estimated. They suggest a compact architecture for the muscarinic M1 receptor amino-terminal domain which may fold in a manner similar to that of rhodopsin. Finally, this fluorescence-based assay, prone to miniaturization, allows reliable detection of unlabelled competitors.


Assuntos
Receptores Muscarínicos/química , Receptores Muscarínicos/metabolismo , Sequência de Aminoácidos , Ligação Competitiva/fisiologia , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Humanos , Rim/citologia , Rim/metabolismo , Ligantes , Proteínas Luminescentes/genética , Dados de Sequência Molecular , Receptor Muscarínico M1 , Receptores Muscarínicos/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sensibilidade e Especificidade , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA