Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(26): e2320572121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38885380

RESUMO

Although most known viruses infecting fungi pathogenic to higher eukaryotes are asymptomatic or reduce the virulence of their host fungi, those that confer hypervirulence to entomopathogenic fungus still need to be explored. Here, we identified and studied a novel mycovirus in Metarhizium flavoviride, isolated from small brown planthopper (Laodelphax striatellus). Based on molecular analysis, we tentatively designated the mycovirus as Metarhizium flavoviride partitivirus 1 (MfPV1), a species in genus Gammapartitivirus, family Partitiviridae. MfPV1 has two double-stranded RNAs as its genome, 1,775 and 1,575 bp in size respectively, encapsidated in isometric particles. When we transfected commercial strains of Metarhizium anisopliae and Metarhizium pingshaense with MfPV1, conidiation was significantly enhanced (t test; P-value < 0. 01), and the significantly higher mortality rates of the larvae of diamondback moth (Plutella xylostella) and fall armyworm (Spodoptera frugiperda), two important lepidopteran pests were found in virus-transfected strains (ANOVA; P-value < 0.05). Transcriptomic analysis showed that transcript levels of pathogenesis-related genes in MfPV1-infected M. anisopliae were obviously altered, suggesting increased production of metarhizium adhesin-like protein, hydrolyzed protein, and destruxin synthetase. Further studies are required to elucidate the mechanism whereby MfPV1 enhances the expression of pathogenesis-related genes and virulence of Metarhizium to lepidopteran pests. This study presents experimental evidence that the transfection of other entomopathogenic fungal species with a mycovirus can confer significant hypervirulence and provides a good example that mycoviruses could be used as a synergistic agent to enhance the biocontrol activity of entomopathogenic fungi.


Assuntos
Micovírus , Metarhizium , Metarhizium/patogenicidade , Metarhizium/genética , Animais , Virulência/genética , Micovírus/genética , Controle Biológico de Vetores/métodos , Mariposas/microbiologia , Mariposas/virologia , Genoma Viral , Filogenia
2.
PLoS Pathog ; 20(1): e1011823, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38236820

RESUMO

A variety of coordinated host-cell responses are activated as defense mechanisms against pore-forming toxins (PFTs). Bacillus thuringiensis (Bt) is a worldwide used biopesticide whose efficacy and precise application methods limits its use to replace synthetic pesticides in agricultural settings. Here, we analyzed the intestinal defense mechanisms of two lepidopteran insect pests after intoxication with sublethal dose of Bt PFTs to find out potential functional genes. We show that larval intestinal epithelium was initially damaged by the PFTs and that larval survival was observed after intestinal epithelium regeneration. Further analyses showed that the intestinal regeneration caused by Cry9A protein is regulated through c-Jun NH (2) terminal kinase (JNK) and Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. JAK/STAT signaling regulates intestinal regeneration through proliferation and differentiation of intestinal stem cells to defend three different Bt proteins including Cry9A, Cry1F or Vip3A in both insect pests, Chilo suppressalis and Spodoptera frugiperda. Consequently, a nano-biopesticide was designed to improve pesticidal efficacy based on the combination of Stat double stranded RNA (dsRNA)-nanoparticles and Bt strain. This formulation controlled insect pests with better effect suggesting its potential use to reduce the use of synthetic pesticides in agricultural settings for pest control.


Assuntos
Bacillus thuringiensis , Praguicidas , Animais , Bacillus thuringiensis/genética , Janus Quinases/genética , Tirosina , Endotoxinas/genética , Insetos , Spodoptera/genética , Larva , Praguicidas/farmacologia , Regeneração , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas , Controle Biológico de Vetores/métodos
3.
Arch Insect Biochem Physiol ; 115(4): e22112, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605672

RESUMO

Insect trehalases have been identified as promising new targets for pest control. These key enzymes are involved in trehalose hydrolysis and plays an important role in insect growth and development. In this contribution, plant and microbial compounds, namely validamycin A, amygdalin, and phloridzin, were evaluated for their effect, through trehalase inhibition, on Acyrthosiphon pisum aphid. The latter is part of the Aphididae family, main pests as phytovirus vectors and being very harmful for crops. Validamycin A was confirmed as an excellent trehalase inhibitor with an half maximal inhibitory concentration and inhibitor constant of 2.2 × 10-7 and 5 × 10-8 M, respectively, with a mortality rate of ~80% on a A. pisum population. Unlike validamycin A, the insect lethal efficacy of amygdalin and phloridzin did not correspond to their trehalase inhibition, probably due to their hydrolysis by insect ß-glucosidases. Our docking studies showed that none of the three compounds can bind to the trehalase active site, unlike their hydrolyzed counterparts, that is, validoxylamine A, phloretin, and prunasin. Validoxylamine A would be by far the best trehalase binder, followed by phloretin and prunasin.


Assuntos
Afídeos , Trealase , Animais , Amigdalina , Afídeos/efeitos dos fármacos , Afídeos/enzimologia , Inositol/análogos & derivados , Nitrilas , Floretina , Florizina , Trealase/antagonistas & inibidores
4.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703098

RESUMO

Human consumption of insects has previously been examined in cross-cultural studies. However, such studies rarely include African countries and willingness-to-pay for insect-based food has never been assessed in cross-cultural studies. The current study presents a cross-cultural study conducted with 409 urban dwellers from Belgium (191 males; 218 females) and 412 urban dwellers from Gabon (219 males; 193 females). Each respondent was surveyed with a questionnaire following the Knowledge, Attitude, and Practices model and included questions relative to willingness-to-pay for 2 insect-based foods (insect baguette and insect burger). More than 90% of respondents from both countries were familiar with edible insects. However, acceptance of entomophagy was lower in respondents from Gabon than in respondents from Belgium. Intercultural differences were also recorded between Gabonese ethnic groups. Most respondents who accepted entomophagy were willing to eat the insect baguette and/or the insect burger. These findings confirm that entomophagy could further develop in Belgium and Gabon. Willingness-to-pay varied between countries and between insect-based foods. In Belgium, the average prices of comparable conventional foods (i.e., same foods but without insects) were lower than the average willingness-to-pay for insect-based foods. In Gabon, respondents were not willing to pay extra for insect-based foods. Setting the right price for insect-based foods is a necessary step to promote more frequent insect consumption.


Assuntos
Comparação Transcultural , Gabão , Bélgica , Humanos , Feminino , Masculino , Adulto , Animais , Pessoa de Meia-Idade , Insetos Comestíveis , Comportamento do Consumidor , Adulto Jovem , Insetos , Inquéritos e Questionários , Adolescente
5.
Planta ; 259(1): 16, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078967

RESUMO

MAIN CONCLUSION: This review provides a detailed description of the function and mechanism of VQ family gene, which is helpful for further research and application of VQ gene resources to improve crops. Valine-glutamine (VQ) motif-containing proteins are a large class of transcriptional regulatory cofactors. VQ proteins have their own unique molecular characteristics. Amino acids are highly conserved only in the VQ domain, while other positions vary greatly. Most VQ genes do not contain introns and the length of their proteins is less than 300 amino acids. A majority of VQ proteins are predicted to be localized in the nucleus. The promoter of many VQ genes contains stress or growth related elements. Segment duplication and tandem duplication are the main amplification mechanisms of the VQ gene family in angiosperms and gymnosperms, respectively. Purification selection plays a crucial role in the evolution of many VQ genes. By interacting with WRKY, MAPK, and other proteins, VQ proteins participate in the multiple signaling pathways to regulate plant growth and development, as well as defense responses to biotic and abiotic stresses. Although there have been some reports on the VQ gene family in plants, most of them only identify family members, with little functional verification, and there is also a lack of complete, detailed, and up-to-date review of research progress. Here, we comprehensively summarized the research progress of VQ genes that have been published so far, mainly including their molecular characteristics, biological functions, importance of VQ motif, and working mechanisms. Finally, the regulatory network and model of VQ genes were drawn, a precise molecular breeding strategy based on VQ genes was proposed, and the current problems and future prospects were pointed out, providing a powerful reference for further research and utilization of VQ genes in plant improvement.


Assuntos
Proteínas de Plantas , Plantas , Proteínas de Plantas/metabolismo , Motivos de Aminoácidos , Plantas/genética , Plantas/metabolismo , Regiões Promotoras Genéticas , Aminoácidos/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Filogenia
6.
Plant Biotechnol J ; 21(11): 2389-2407, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37540474

RESUMO

Aphid salivary proteins are critical in modulating plant defence responses. Grain aphid Sitobion miscanthi is an important wheat pest worldwide. However, the molecular basis for the regulation of the plant resistance to cereal aphids remains largely unknown. Here, we show that SmCSP4, a chemosensory protein from S. miscanthi saliva, is secreted into wheat plants during aphid feeding. Delivery of SmCSP4 into wheat leaves activates salicylic acid (SA)-mediated plant defence responses and subsequently reduces aphid performance by deterring aphid feeding behaviour. In contrast, silencing SmCSP4 gene via nanocarrier-mediated RNAi significantly decreases the ability of aphids to activate SA defence pathway. Protein-protein interaction assays showed that SmCSP4 directly interacts with wheat transcriptional factor TaWRKY76 in plant nucleus. Furthermore, TaWRKY76 directly binds to the promoter of SA degradation gene Downy Mildew Resistant 6 (DMR6) and regulates its gene expression as transcriptional activator. SmCSP4 secreted by aphids reduces the transcriptional activation activity of TaWRKY76 on DMR6 gene expression, which is proposed to result in increases of SA accumulation and enhanced plant immunity. This study demonstrated that SmCSP4 acts as salivary elicitor that is involved in activating SA signalling defence pathway of wheat by interacting with TaWRKY76, which provide novel insights into aphid-cereal crops interactions and the molecular mechanism on induced plant immunity.


Assuntos
Afídeos , Saliva , Animais , Saliva/metabolismo , Afídeos/fisiologia , Triticum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácido Salicílico/metabolismo
7.
Int Microbiol ; 26(2): 397-409, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36484909

RESUMO

The current plastic pollution throughout the world is a rising concern that demands the optimization of biodegradation processes. One avenue for this is to identify plastic-degrading bacteria and associated enzymes from the gut bacteria of insect models such as Tenebrio molitor, Plodia interpunctella or Galleria mellonella that have the ability to ingest and rapidly degrade polyethylene. Therefore, this study takes part in understanding the role of the gut bacteria by investigating G. mellonella as a biological model feeding with a diet based on honeybee wax mixed or not with low-density polyethylene. Gut microbiome was analyzed by high throughput 16S rRNA sequencing, and Enterococcaceae and Oxalobacteraceae were found to be the major bacterial families. Compared to the control, the supplementation of low-density polyethylene did not cause significant modification of the bacterial microbiota at community and taxa levels, suggesting bacterial microbiome resilience. The bacterial proteome analysis of gut contents was encouraging for the identification of plastic degrading enzymes such as the phenylacetaldehyde dehydrogenase which participate in styrene degradation. This study allowed a better characterization of the gut bacteria of G. mellonella and provided a basis for the further study of biodegradation of polyethylene based on the bacterial microbiota from insect guts.


Assuntos
Mariposas , Polietileno , Humanos , Abelhas/genética , Animais , Larva/metabolismo , Larva/microbiologia , Polietileno/metabolismo , RNA Ribossômico 16S/genética , Mariposas/genética , Mariposas/metabolismo , Mariposas/microbiologia , Plásticos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Dieta , Suplementos Nutricionais
8.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834416

RESUMO

VQ motif-containing (VQ) proteins are a class of transcription regulatory cofactors widely present in plants, playing crucial roles in growth and development, stress response, and defense. Although there have been some reports on the member identification and functional research of VQ genes in some plants, there is still a lack of large-scale identification and clear graphical presentation of their basic characterization information to help us to better understand this family. Especially in gymnosperms, the VQ family genes and their evolutionary relationships have not yet been reported. In this study, we systematically identified 2469 VQ genes from 56 plant species, including bryophytes, gymnosperms, and angiosperms, and analyzed their molecular and evolutionary features. We found that amino acids are only highly conserved in the VQ domain, while other positions are relatively variable; most VQ genes encode relatively small proteins and do not have introns. The GC content in Poaceae plants is the highest (up to 70%); these VQ proteins can be divided into nine subgroups. In particular, we analyzed the molecular characteristics, chromosome distribution, duplication events, and expression levels of VQ genes in three gymnosperms: Ginkgo biloba, Taxus chinensis, and Pinus tabuliformis. In gymnosperms, VQ genes are classified into 11 groups, with highly similar motifs in each group; most VQ proteins have less than 300 amino acids and are predicted to be located in nucleus. Tandem duplication is an important driving force for the expansion of the VQ gene family, and the evolutionary processes of most VQ genes and duplication events are relatively independent; some candidate VQ genes are preliminarily screened, and they are likely to be involved in plant growth and stress and defense responses. These results provide detailed information and powerful references for further understanding and utilizing the VQ family genes in various plants.


Assuntos
Cycadopsida , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Cycadopsida/genética , Cycadopsida/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas/metabolismo , Aminoácidos/metabolismo , Filogenia
9.
Plant Biotechnol J ; 20(11): 2187-2201, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35984895

RESUMO

Aphids secrete diverse repertoires of salivary effectors into host plant cells to promote infestation by modulating plant defence. The greenbug Schizaphis graminum is an important cereal aphid worldwide. However, the secreted effectors of S. graminum are still uncharacterized. Here, 76 salivary proteins were identified from the watery saliva of S. graminum using transcriptome and proteome analyses. Among them, a putative salivary effector Sg2204 was significantly up-regulated during aphid feeding stages, and transient overexpression of Sg2204 in Nicotiana benthamiana inhibited cell death induced by BAX or INF1. Delivering Sg2204 into wheat via the type III secretion system of Pseudomonas fluorescens EtAnH suppressed pattern-triggered immunity (PTI)-associated callose deposition. The transcript levels of jasmonic acid (JA)- and salicylic acid (SA)-associated defence genes of wheat were significantly down-regulated, and the contents of both JA and SA were also significantly decreased after delivery of Sg2204 into wheat leaves. Additionally, feeding on wheat expressing Sg2204 significantly increased the weight and fecundity of S. graminum and promoted aphid phloem feeding. Sg2204 was efficiently silenced via spray-based application of the nanocarrier-mediated transdermal dsRNA delivery system. Moreover, Sg2204-silenced aphids induced a stronger wheat defence response and resulted in negative impacts on aphid feeding behaviour, survival and fecundity. Silencing of Sg2204 homologues from four aphid species using nanocarrier-delivered dsRNA also significantly reduced aphid performance on host plants. Thus, our study characterized the salivary effector Sg2204 of S. graminum involved in promoting host susceptibility by suppressing wheat defence, which can also be regarded as a promising RNAi target for aphid control.


Assuntos
Afídeos , Animais , Afídeos/genética , Triticum/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo
10.
Arch Insect Biochem Physiol ; 109(1): e21853, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34820894

RESUMO

Corn leaf aphid Rhopalosiphum maidis (Fitch) can feed on various cereal crops and transmit viruses that may cause serious economic losses. To test the impact of both host plant species and age on R. maidis, as well as the proteomic difference of diverse populations, we first investigated the survival and reproduction of six R. maidis populations (i.e., LF, HF, GZ, DY, BJ, and MS) via a direct observation method in the laboratory on 10 and 50 cm high maize seedlings, and 10 cm high barley seedlings. Then a proteomic approach was implemented to identify the differentially expressed proteins from both aphids and endosymbionts of BJ and MS populations. Results indicated that the BJ population performed significantly better than the others on both barley and 50 cm high maize seedlings, while no population could survive on 10 cm high maize seedlings. The proteomic results demonstrated that the expression levels of myosin heavy chain (muscle isoform X12) (spot 781) and peroxidase (spot 1383) were upregulated, while ATP-dependent protease Hsp 100 (spot 2137) from Hamiltonella defensa and protein SYMBAF (spot 2703) from Serratia symbiotica were downregulated in the BJ population when compared to expression levels of the MS population. We hypothesize that the fatalness observed on 10 cm high maize seedlings may be caused by secondary metabolites that are synthesized by the seedlings and the MS population of R. maidis should be more stress-resistant than the BJ population. Our results also provide insights for understanding the interaction between host plants and aphids.


Assuntos
Afídeos/metabolismo , Proteoma , Animais , Afídeos/microbiologia , Afídeos/fisiologia , Enterobacteriaceae/metabolismo , Hordeum/parasitologia , Proteínas de Insetos/metabolismo , Folhas de Planta/parasitologia , Serratia/metabolismo , Simbiose , Zea mays/parasitologia
11.
J Chem Ecol ; 47(8-9): 747-754, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34550513

RESUMO

Plant Growth-Promoting Rhizobacteria (PGPR) induce systemic resistance (SR) in plants, decreasing the development of phytopathogens. The FZB42 strain of Bacillus velezensis is known to induce an SR against pathogens in various plant species. Previous studies suggested that it could also influence the interactions between plants and associated pests. However, insects have developed several strategies to counteract plant defenses, including salivary proteins that allow the insect escaping detection, manipulating defensive pathways to its advantage, deactivating early signaling processes, or detoxifying secondary metabolites. Because Brown Marmorated Stink Bug (BMSB) Halyomorpha halys is highly invasive and polyphagous, we hypothesized that it could detect the PGPR-induced systemic defenses in the plant, and efficiently adapt its salivary compounds to counteract them. Therefore, we inoculated a beneficial rhizobacterium on Vicia faba roots and soil, previous to plant infestation with BMSB. Salivary gland proteome of BMSB was analyzed by LC-MS/MS and a label-free quantitative proteomic method. Among the differentially expressed proteins, most were up-regulated in salivary glands of insects exposed to PGPR-treated plants for 24 h. We could confirm that BMSB was confronted with a stress during feeding on PGPR-treated plants. The to-be-confirmed defensive state of the plant would have been rapidly detected by the invasive H. halys pest, which consequently modified its salivary proteins. Among the up-regulated proteins, many could be associated with a role in plant defense counteraction, and more especially in allelochemicals detoxification or sequestration.


Assuntos
Bacillus/crescimento & desenvolvimento , Heterópteros/metabolismo , Proteínas e Peptídeos Salivares/análise , Vicia faba/microbiologia , Animais , Cromatografia Líquida de Alta Pressão , Heterópteros/crescimento & desenvolvimento , Larva/metabolismo , Glândulas Salivares/metabolismo , Estresse Fisiológico , Espectrometria de Massas em Tandem , Regulação para Cima , Vicia faba/química , Vicia faba/parasitologia
12.
Arch Insect Biochem Physiol ; 106(1): e21752, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33084142

RESUMO

The grain aphid, Sitobion avenae, is an economically important cereal pest worldwide. Aphid saliva plays an essential role in the interaction between aphids and their host plants. However, limited information is available regarding the proteins found in the saliva of S. avenae. Here, the watery saliva proteins from S. avenae were collected in an artificial diet and identified using a liquid chromatography-mass spectrometry/mass spectrometry analysis. A total of 114 proteins were identified in S. avenae saliva, including several enzymes, binding proteins, and putative effectors, as well as other proteins with unknown functions. In comparison with salivary proteins from nine other aphid species, the most striking feature of the salivary protein from S. avenae was the different patterns of protein functions. Several orthologous proteins secreted by other aphid species such as glucose dehydrogenase, elongation factors, and effector C002 were also detected in S. avenae saliva and speculated to play a significant role in aphid-plant interactions. These results provide further insight into the molecular basis between aphids and cereal plant interactions.


Assuntos
Afídeos/metabolismo , Proteínas de Insetos/química , Saliva/metabolismo , Animais , Cromatografia Líquida , Proteínas de Insetos/metabolismo , Proteoma/metabolismo , Espectrometria de Massas em Tandem
13.
Proteomics ; 20(8): e1900400, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32108434

RESUMO

In Sub-Saharan Africa, An. gambiae sensu lato (s.l.) Giles 190, largely contributes to malaria transmission. Therefore, the authors carry out a proteomic analysis to compare its metabolic state, depending on different pesticide pressures by selecting areas with/without cotton crops. The proteomes data are available via ProteomeXchange with identifier PXD016300. From a total of 1.182 identified proteins, 648 are retained for further statistical analysis and are attributed to biological functions, the most important of which being energy metabolism (120 proteins) followed by translation-biogenesis (74), cytoskeleton (71), stress response (62), biosynthetic process (60), signalling (44), cellular respiration (38), cell redox homeostasis (25), DNA processing (17), pheromone binding (10), protein folding (9), RNA processing (9), other proteins (26) and unknown functions (83). In the Sudano-Sahelian region, 421 (91.3%) proteins are found in samples from areas both with and without cotton crops. By contrast, in the Sahelian region, only 271 (55.0%) are common to both crop areas, and 233 proteins are up-regulated from the cotton area. The focus is placed on proteins with putative roles in insecticide resistance, according to literature. This study provides the first whole-body proteomic characterisation of An. gambiae s.l. in Burkina Faso, as a framework to strengthen vector control strategies.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/metabolismo , Proteínas de Insetos/metabolismo , Inseticidas/farmacologia , Animais , Burkina Faso , Clima , Produtos Agrícolas , Feminino , Proteínas de Insetos/análise , Resistência a Inseticidas/fisiologia , Espectrometria de Massas , Proteômica
14.
Mol Biol Rep ; 47(1): 211-224, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31643044

RESUMO

Plasmodium falciparum is transmitted by mosquitoes from the Anopheles gambiae sensu lato (s.l) species complex and is responsible for severe forms of malaria. The composition of the mosquitoes' microbiota plays a role in P. falciparum transmission, so we studied midgut bacterial communities of An. gambiae s.l from Burkina Faso. DNA was extracted from 17 pools of midgut of mosquitoes from the Anopheles gambiae complex from six localities in three climatic areas, including cotton-growing and cotton-free localities to include potential differences in insecticide selection pressure. The v3-v4 region of the 16S rRNA gene was targeted and sequenced using Illumina Miseq (2 × 250 nt). Diversity analysis was performed using QIIME and R software programs. The major bacterial phylum was Proteobacteria (97.2%) in all samples. The most abundant genera were Enterobacter (32.8%) and Aeromonas (29.8%), followed by Pseudomonas (11.8%), Acinetobacter (5.9%) and Thorsellia (2.2%). No statistical difference in operational taxonomic units (OTUs) was found (Kruskal-Wallis FDR-p > 0.05) among the different areas, fields or localities. Richness and diversity indexes (observed OTUs, Chao1, Simpson and Shannon indexes) showed significant differences in the cotton-growing fields and in the agroclimatic zones, mainly in the Sudano-Sahelian area. OTUs from seven bacterial species that mediate refractoriness to Plasmodium infection in An. gambiae s.l were detected. The beta diversity analysis did not show any significant difference. Therefore, a same control strategy of using bacterial species refractoriness to Plasmodium to target mosquito midgut bacterial community and affect their fitness in malaria transmission may be valuable tool for future malaria control efforts in Burkina Faso.


Assuntos
Anopheles/microbiologia , Bactérias/classificação , Microbioma Gastrointestinal , Animais , Anopheles/parasitologia , Bactérias/genética , Burkina Faso , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , Interações Hospedeiro-Parasita/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Intestinos/microbiologia , Intestinos/patologia , Interações Microbianas/fisiologia , Filogenia , Plasmodium falciparum/fisiologia , RNA Ribossômico 16S/análise , Seleção Genética/efeitos dos fármacos
15.
Parasitology ; 147(7): 731-739, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32312341

RESUMO

Dermanyssus gallinae (De Geer 1778), commonly named the poultry red mite (PRM), is considered to be the most harmful ectoparasite in poultry farms in Europe. This species feeds on the blood of laying hens, but spends most of its time hidden in cracks and crevices around hen nests. To control PRM populations in poultry houses, chemical pesticides are currently used; however, concern is growing regarding the harmful residues found in eggs and hens, along with the increased resistance of mites against several compounds. Alternatives to synthetic compounds are now being explored, including vaccines, biological control, physical control and semiochemical control based on the chemical ecology of PRM. This review focused on the different volatile organic compounds (VOCs) identified from D. gallinae and other mite species that have been discovered to control them. Pheromones (aggregation pheromone, sex pheromone and alarm pheromone) and kairomones promoting attraction behaviour in D. gallinae and other mite species are presented, while VOCs from essential oils and plant extracts with repellent properties are also explored. Finally, devices using VOCs on PRM in the field are described, with devices that have been tested on other Acari species being mentioned as potential directions for the future control of PRM.


Assuntos
Acaricidas , Ácaros , Doenças das Aves Domésticas/prevenção & controle , Controle de Ácaros e Carrapatos , Compostos Orgânicos Voláteis , Animais , Especificidade da Espécie
16.
BMC Ecol ; 20(1): 66, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256678

RESUMO

BACKGROUND: The fall Armyworm (FAW) Spodoptera frugiperda (JE Smith), is currently a devastating pest throughout the world due to its dispersal capacity and voracious feeding behaviour on several crops. A MaxEnt species distributions model (SDM) was developed based on collected FAW occurrence and environmental data's. Bioclimatic zones were identified and the potential distribution of FAW in South Kivu, eastern DR Congo, was predicted. RESULTS: Mean annual temperature (bio1), annual rainfall (bio12), temperature seasonality (bio4) and longest dry season duration (llds) mainly affected the FAW potential distribution. The average area under the curve value of the model was 0.827 demonstrating the model efficient accuracy. According to Jackknife test of variable importance, the annual rainfall was found to correspond to the highest gain when used in isolation. FAWs' suitable areas where this pest is likely to be present in South Kivu province are divided into two corridors. The Eastern corridor covering the Eastern areas of Kalehe, Kabare, Walungu, Uvira and Fizi territories and the Western corridor covering the Western areas of Kalehe, Kabare, Walungu and Mwenga. CONCLUSIONS: This research provides important information on the distribution of FAW and bioclimatic zones in South Kivu. Given the rapid spread of the insect and the climatic variability observed in the region that favor its development and dispersal, it would be planned in the future to develop a monitoring system and effective management strategies to limit it spread and crop damage.


Assuntos
Produtos Agrícolas , Animais , República Democrática do Congo , Spodoptera
17.
Proteomics ; 19(7): e1800436, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30793498

RESUMO

The invasive brown marmorated stink bug (BMSB), Halyomorpha halys Stål, and the southern green stink bugs (SGSBs), Nezara viridula L., are widely distributed in Europe, even if the date of introduction and the diet differ. Saliva of Hemipteran pests plays essential roles in the interaction between insects and their host plants. The salivary proteomes of several aphid species have been studied and found to differ according to the species, while no comparative investigation between phytophagous stink bugs has been performed yet. Here, the salivary proteins from two bugs, BMSB and SGSB, are analyzed using LC-MS/MS. Data are available via ProteomeXchange with identifiers PXD011920 and PXD011976. A total of 238 and 305 proteins are identified in salivary glands of BMSB and SGSB, respectively. In comparison with salivary proteome from other Hemiptera, the most striking feature of the salivary gland proteomes of SGSB and BMSB is the similar pattern of protein functions between both species. Some of the proteins are speculated to play a significant role in plant-insect interactions. The results herein provide a framework for future research to elucidate the molecular basis of differential impact of piercing-sucking insects on host plants.


Assuntos
Heterópteros/metabolismo , Proteoma/metabolismo , Glândulas Salivares/metabolismo , Animais , Cromatografia Líquida , Espectrometria de Massas em Tandem
18.
BMC Plant Biol ; 19(1): 547, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31823722

RESUMO

BACKGROUND: Infestation of the phytotoxic aphid Schizaphis graminum can rapidly induce leaf chlorosis in susceptible plants, but this effect is not observed with the nonphytotoxic aphid Sitobion avenae. However, few studies have attempted to identify the different defence responses induced in wheat by S. graminum and S. avenae feeding and the mechanisms underlying the activation of chlorosis by S. graminum feeding. RESULTS: S. graminum feeding significantly reduced the chlorophyll content of wheat leaves, and these effects were not observed with S. avenae. A transcriptomic analysis showed that the expression levels of genes involved in the salicylic acid, jasmonic acid and ethylene signalling defence pathways were significantly upregulated by both S. avenae and S. graminum feeding; however, more plant defence genes were activated by S. graminum feeding than S. avenae feeding. The transcript levels of genes encoding cell wall-modifying proteins were significantly increased after S. graminum feeding, but only a few of these genes were induced by S. avenae. Furthermore, various reactive oxygen species-scavenging genes, such as 66 peroxidase (POD) and 8 ascorbate peroxidase (APx) genes, were significantly upregulated after S. graminum feeding, whereas only 15 POD and one APx genes were induced by S. avenae feeding. The activity of four antioxidant enzymes was also significantly upregulated by S. graminum feeding. Cytological examination showed that S. graminum feeding induced substantial hydrogen peroxide (H2O2) accumulation in wheat leaves. The chlorosis symptoms and the loss of chlorophyll observed in wheat leaves after S. graminum feeding were reduced and inhibited by the scavenging of H2O2 by dimethylthiourea, which indicated that H2O2 plays important role in the induction of chlorosis by S. graminum feeding. CONCLUSIONS: S. graminum and S. avenae feeding induces the JA, SA and ET signalling pathways, but S. graminum activated stronger plant defence responses than S. avenae. S. graminum feeding triggers strong ROS-scavenging activity and massive H2O2 production in wheat leaves, and the accumulation of H2O2 induced by S. graminum feeding is involved in the activation of chlorosis in wheat leaves. These results enhance our understanding of mechanisms underlying aphid-wheat interactions and provide clues for the development of aphid-resistant wheat varieties.


Assuntos
Afídeos/fisiologia , Genes de Plantas/fisiologia , Herbivoria , Transcriptoma , Triticum/fisiologia , Animais , Cadeia Alimentar , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas , Folhas de Planta/fisiologia , Especificidade da Espécie , Triticum/genética
19.
Proteomics ; 18(9): e1700378, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29577599

RESUMO

Aphid saliva plays an essential role in the interaction between aphids and their host plants. Several aphid salivary proteins have been identified but none from galling aphids. Here the salivary proteins from the Chinese gall aphid are analyzed, Schlechtendalia chinensis, via an LC-MS/MS analysis. A total of 31 proteins are identified directly from saliva collected via an artificial diet, and 141 proteins are identified from extracts derived from dissected salivary glands. Among these identified proteins, 17 are found in both collected saliva and dissected salivary glands. In comparison with salivary proteins from ten other free-living Hemipterans, the most striking feature of the salivary protein from S. chinensis is the existence of high proportion of proteins with binding activity, including DNA-, protein-, ATP-, and iron-binding proteins. These proteins maybe involved in gall formation. These results provide a framework for future research to elucidate the molecular basis for gall induction by galling aphids.


Assuntos
Afídeos/metabolismo , Proteínas de Insetos/metabolismo , Saliva/metabolismo , Glândulas Salivares/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Animais , China
20.
Glob Chang Biol ; 24(1): 101-116, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28805965

RESUMO

Bumblebees in Europe have been in steady decline since the 1900s. This decline is expected to continue with climate change as the main driver. However, at the local scale, land use and land cover (LULC) change strongly affects the occurrence of bumblebees. At present, LULC change is rarely included in models of future distributions of species. This study's objective is to compare the roles of dynamic LULC change and climate change on the projected distribution patterns of 48 European bumblebee species for three change scenarios until 2100 at the scales of Europe, and Belgium, Netherlands and Luxembourg (BENELUX). We compared three types of models: (1) only climate covariates, (2) climate and static LULC covariates and (3) climate and dynamic LULC covariates. The climate and LULC change scenarios used in the models include, extreme growth applied strategy (GRAS), business as might be usual and sustainable European development goals. We analysed model performance, range gain/loss and the shift in range limits for all bumblebees. Overall, model performance improved with the introduction of LULC covariates. Dynamic models projected less range loss and gain than climate-only projections, and greater range loss and gain than static models. Overall, there is considerable variation in species responses and effects were most pronounced at the BENELUX scale. The majority of species were predicted to lose considerable range, particularly under the extreme growth scenario (GRAS; overall mean: 64% ± 34). Model simulations project a number of local extinctions and considerable range loss at the BENELUX scale (overall mean: 56% ± 39). Therefore, we recommend species-specific modelling to understand how LULC and climate interact in future modelling. The efficacy of dynamic LULC change should improve with higher thematic and spatial resolution. Nevertheless, current broad scale representations of change in major land use classes impact modelled future distribution patterns.


Assuntos
Abelhas , Biodiversidade , Mudança Climática , União Europeia , Modelos Biológicos , Animais , Conservação dos Recursos Naturais , Europa (Continente)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA