Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 420
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2314819121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285944

RESUMO

SO2 (Sulfur dioxide) is the major precursor to the production of sulfuric acid (H2SO4), contributing to acid rain and atmospheric aerosols. Sulfuric acid formed from SO2 generates light-reflecting sulfate aerosol particles in the atmosphere. This property has prompted recent geoengineering proposals to inject sulfuric acid or its precursors into the Earth's atmosphere to increase the planetary albedo to counteract global warming. SO2 oxidation in the atmosphere by the hydroxyl radical HO to form HOSO2 is a key rate-limiting step in the mechanism for forming acid rain. However, the dynamics of the HO + SO2 → HOSO2 reaction and its slow rate in the atmosphere are poorly understood to date. Herein, we use photoelectron spectroscopy of cryogenically cooled HOSO2- anion to access the neutral HOSO2 radical near the transition state of the HO + SO2 reaction. Spectroscopic and dynamic calculations are conducted on the first ab initio-based full-dimensional potential energy surface to interpret the photoelectron spectra of HOSO2- and to probe the dynamics of the HO + SO2 reaction. In addition to the finding of a unique pre-reaction complex (HO⋯SO2) directly connected to the transition state, dynamic calculations reveal that the accessible phase space for the HO + SO2 → HOSO2 reaction is extremely narrow, forming a key reaction bottleneck and slowing the reaction rate in the atmosphere, despite the low reaction barrier. This study underlines the importance of understanding the full multidimensional potential energy surface to elucidate the dynamics of complex bimolecular reactions involving polyatomic reactants.

2.
Proc Natl Acad Sci U S A ; 121(31): e2404595121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39047040

RESUMO

New particle formation (NPF) substantially affects the global radiation balance and climate. Iodic acid (IA) is a key marine NPF driver that recently has also been detected inland. However, its impact on continental particle nucleation remains unclear. Here, we provide molecular-level evidence that IA greatly facilitates clustering of two typical land-based nucleating precursors: dimethylamine (DMA) and sulfuric acid (SA), thereby enhancing particle nucleation. Incorporating this mechanism into an atmospheric chemical transport model, we show that IA-induced enhancement could realize an increase of over 20% in the SA-DMA nucleation rate in iodine-rich regions of China. With declining anthropogenic pollution driven by carbon neutrality and clean air policies in China, IA could enhance nucleation rates by 1.5 to 50 times by 2060. Our results demonstrate the overlooked key role of IA in continental NPF nucleation and highlight the necessity for considering synergistic SA-IA-DMA nucleation in atmospheric modeling for correct representation of the climatic impacts of aerosols.

3.
Proc Natl Acad Sci U S A ; 121(15): e2315730121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557188

RESUMO

Microdroplets are a class of soft matter that has been extensively employed for chemical, biochemical, and industrial applications. However, fabricating microdroplets with largely controllable contact-area shape and apparent contact angle, a key prerequisite for their applications, is still a challenge. Here, by engineering a type of surface with homocentric closed-loop microwalls/microchannels, we can achieve facile size, shape, and contact-angle tunability of microdroplets on the textured surfaces by design. More importantly, this class of surface topologies (with universal genus value = 1) allows us to reveal that the conventional Gibbs equation (widely used for assessing the edge effect on the apparent contact angle of macrodroplets) seems no longer applicable for water microdroplets or nanodroplets (evidenced by independent molecular dynamics simulations). Notably, for the flat surface with the intrinsic contact angle ~0°, we find that the critical contact angle on the microtextured counterparts (at edge angle 90°) can be as large as >130°, rather than 90° according to the Gibbs equation. Experiments show that the breakdown of the Gibbs equation occurs for microdroplets of different types of liquids including alcohol and hydrocarbon oils. Overall, the microtextured surface design and topological wetting states not only offer opportunities for diverse applications of microdroplets such as controllable chemical reactions and low-cost circuit fabrications but also provide testbeds for advancing the fundamental surface science of wetting beyond the Gibbs equation.

4.
Chem Rev ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189697

RESUMO

CO2 capture and sequestration based on hydrate technology are considered supplementary approaches for reducing carbon emissions and mitigating the greenhouse effect. Direct CO2 hydrate formation and CH4 gas substitution in natural gas hydrates are two of the main methods used for the sequestration of CO2 in hydrates. In this Review, we introduce the crystal structures of CO2 hydrates and CO2-mixed gas hydrates and summarize the interactions between the CO2 molecules and clathrate hydrate/H2O frames. In particular, we focus on the role of diffraction techniques in analyzing hydrate structures. The kinetic and thermodynamic properties then are introduced from micro/macro perspectives. Furthermore, the replacement of natural gas with CO2/CO2-mixed gas is discussed comprehensively in terms of intermolecular interactions, influencing factors, and displacement efficiency. Based on the analysis of related costs, risks, and policies, the economics of CO2 capture and sequestration based on hydrate technology are explained. Moreover, the difficulties and challenges at this stage and the directions for future research are described. Finally, we investigate the status of recent research related to CO2 capture and sequestration based on hydrate technology, revealing its importance in carbon emission reduction.

5.
Nature ; 577(7788): 60-63, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31894149

RESUMO

The formation and growth of water-ice layers on surfaces and of low-dimensional ice under confinement are frequent occurrences1-4. This is exemplified by the extensive reporting of two-dimensional (2D) ice on metals5-11, insulating surfaces12-16, graphite and graphene17,18 and under strong confinement14,19-22. Although structured water adlayers and 2D ice have been imaged, capturing the metastable or intermediate edge structures involved in the 2D ice growth, which could reveal the underlying growth mechanisms, is extremely challenging, owing to the fragility and short lifetime of those edge structures. Here we show that noncontact atomic-force microscopy with a CO-terminated tip (used previously to image interfacial water with minimal perturbation)12, enables real-space imaging of the edge structures of 2D bilayer hexagonal ice grown on a Au(111) surface. We find that armchair-type edges coexist with the zigzag edges usually observed in 2D hexagonal crystals, and freeze these samples during growth to identify the intermediate edge structures. Combined with simulations, these experiments enable us to reconstruct the growth processes that, in the case of the zigzag edge, involve the addition of water molecules to the existing edge and a collective bridging mechanism. Armchair edge growth, by contrast, involves local seeding and edge reconstruction and thus contrasts with conventional views regarding the growth of bilayer hexagonal ices and 2D hexagonal matter in general.


Assuntos
Gelo , Microscopia de Tunelamento , Cristalização
6.
Proc Natl Acad Sci U S A ; 120(20): e2219588120, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155894

RESUMO

Aerosol microdroplets as microreactors for many important atmospheric reactions are ubiquitous in the atmosphere. pH largely regulates the chemical processes within them; however, how pH and chemical species spatially distribute within an atmospheric microdroplet is still under intense debate. The challenge is to measure pH distribution within a tiny volume without affecting the chemical species distribution. We demonstrate a method based on stimulated Raman scattering microscopy to visualize the three-dimensional pH distribution inside single microdroplets of varying sizes. We find that the surface of all microdroplets is more acidic, and a monotonic trend of pH decreasing is observed in the 2.9-µm aerosol microdroplet from center to edge, which is well supported by molecular dynamics simulation. However, bigger cloud microdroplet differs from small aerosol for pH distribution. This size-dependent pH distribution in microdroplets can be related to the surface-to-volume ratio. This work presents noncontact measurement and chemical imaging of pH distribution in microdroplets, filling the gap in our understanding of spatial pH in atmospheric aerosol.

7.
Proc Natl Acad Sci U S A ; 119(39): e2211348119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122221

RESUMO

Carbon nanotubes (CNTs) mimicking the structure of aquaporins support fast water transport, making them strong candidates for building next-generation high-performance membranes for water treatment. The diffusion and transport behavior of water through CNTs or nanoporous graphene can be fundamentally different from those of bulk water through a macroscopic tube. To date, the nanotube-length-dependent physical transport behavior of water is still largely unexplored. Herein, on the basis of molecular dynamics simulations, we show that the flow rate of water through 0.83-nm-diameter (6,6) and 0.96-nm-diameter (7,7) CNTs exhibits anomalous transport behavior, whereby the flow rate increases markedly first and then either slowly decreases or changes slightly as the CNT length l increases. The critical range of l for the flow-rate transition is 0.37 to 0.5 nm. This anomalous water transport behavior is attributed to the l-dependent mechanical stability of the transient hydrogen-bonding chain that connects water molecules inside and outside the CNTs and bypasses the CNT orifice. The results unveil a microscopic mechanism governing water transport through subnanometer tubes, which has important implications for nanofluidic manipulation.


Assuntos
Grafite , Nanotubos de Carbono , Difusão , Hidrogênio , Simulação de Dinâmica Molecular , Nanotubos de Carbono/química
8.
Proc Natl Acad Sci U S A ; 119(39): e2205668119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122231

RESUMO

Hydrolysis of N2O5 under tropospheric conditions plays a critical role in assessing the fate of O3, OH, and NOx in the atmosphere. However, its removal mechanism has not been fully understood, and little is known about the role of entropy. Herein, we propose a removal path of N2O5 on the water clusters/droplet with the existence of amine, which entails a low free-energy barrier of 4.46 and 3.76 kcal/mol on a water trimer and droplet, respectively, at room temperature. The free-energy barrier exhibits strong temperature dependence; a barrierless hydrolysis process of N2O5 at low temperature (≤150 K) is observed. By coupling constrained ab initio molecular dynamics (constrained AIMD) simulations with thermodynamic integration methods, we quantitively evaluated the entropic contributions to the free energy and compared NH3-, methylamine (MA)-, and dimethylamine (DMA)-promoted hydrolysis of N2O5 on water clusters and droplet. Our results demonstrate that methylation of NH3 stabilizes the product state and promotes hydrolysis of N2O5 by reducing the free-energy barriers. Furthermore, a quantitative analysis of the internal coordinate distribution of the reaction center and the relative position of surrounding species reveals that the significant entropic contribution primarily results from the ensemble effect of configurations observed in the AIMD simulations. Such an ensemble effect becomes more significant with more water molecules included. Lowering the temperature effectively minimizes the entropic contribution, making the hydrolysis more exothermic and barrierless. This study sheds light on the importance of the promoting effect of amines and the entropic effect on gas-phase hydrolysis reactions, which may have far-reaching implications in atmospheric chemistry.


Assuntos
Aminas , Água , Dimetilaminas , Hidrólise , Metilaminas , Água/química
9.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131938

RESUMO

The catalytic depletion of Antarctic stratospheric ozone is linked to anthropogenic emissions of chlorine and bromine. Despite its larger ozone-depleting efficiency, the contribution of ocean-emitted iodine to ozone hole chemistry has not been evaluated, due to the negligible iodine levels previously reported to reach the stratosphere. Based on the recently observed range (0.77 ± 0.1 parts per trillion by volume [pptv]) of stratospheric iodine injection, we use the Whole Atmosphere Community Climate Model to assess the role of iodine in the formation and recent past evolution of the Antarctic ozone hole. Our 1980-2015 simulations indicate that iodine can significantly impact the lower part of the Antarctic ozone hole, contributing, on average, 10% of the lower stratospheric ozone loss during spring (up to 4.2% of the total stratospheric column). We find that the inclusion of iodine advances the beginning and delays the closure stages of the ozone hole by 3 d to 5 d, increasing its area and mass deficit by 11% and 20%, respectively. Despite being present in much smaller amounts, and due to faster gas-phase photochemical reactivation, iodine can dominate (∼73%) the halogen-mediated lower stratospheric ozone loss during summer and early fall, when the heterogeneous reactivation of inorganic chlorine and bromine reservoirs is reduced. The stratospheric ozone destruction caused by 0.77 pptv of iodine over Antarctica is equivalent to that of 3.1 (4.6) pptv of biogenic very short-lived bromocarbons during spring (rest of sunlit period). The relative contribution of iodine to future stratospheric ozone loss is likely to increase as anthropogenic chlorine and bromine emissions decline following the Montreal Protocol.


Assuntos
Atmosfera/análise , Iodo/química , Perda de Ozônio , Ozônio Estratosférico/química , Poluentes Atmosféricos/química , Regiões Antárticas , Estações do Ano
10.
Nano Lett ; 24(23): 6858-6864, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38808664

RESUMO

Mechanochemical strategies are widely used in various fields, ranging from friction and wear to mechanosynthesis, yet how the mechanical stress activates the chemical reactions at the electronic level is still open. We used first-principles density functional theory to study the rule of the stress-modified electronic states in transmitting mechanical energy to trigger chemical responses for different mechanochemical systems. The electron density redistribution among initial, transition, and final configurations is defined to correlate the energy evolution during reactions. We found that stress-induced changes in electron density redistribution are linearly related to activation energy and reaction energy, indicating the transition from mechanical work to chemical reactivity. The correlation coefficient is defined as the term "interface reactivity coefficient" to evaluate the susceptibility of chemical reactivity to mechanical action for material interfaces. The study may shed light on the electronic mechanism of the mechanochemical reactions behind the fundamental model as well as the mechanochemical phenomena.

11.
J Am Chem Soc ; 146(26): 17898-17907, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38912929

RESUMO

The interfaces of weakly hydrated mineral substrates have been shown to serve as catalytic sites for chemical reactions that may not be accessible in the gas phase or under bulk conditions. Currently known mechanisms for the formation of reactive oxygen species (ROS) from nitrogen dioxide (NO2) involve NO2 dimerization. Here, we report the formation of the ROS HONO via a mechanism involving simple adsorption of a single NO2 molecule on a weakly hydrated calcite substrate. First-principles molecular dynamics simulations coupled with enhanced sampling techniques show how an adsorbed water sublayer can enhance NO2 adsorption on calcite compared to adsorption on a bare dry substrate. On the weakly hydrated calcite surface, an interfacial electric field facilitates proton extraction from water, thus allowing HONO formation from a single adsorbed NO2, i.e., without the need for the formation of a NO2 dimer precomplex. HONO formation on calcite is kinetically more favorable than that in the gas phase, with a reaction barrier of 14 kcal/mol on the weakly hydrated calcite surface compared to 27 kcal/mol in the gas phase. Further photocatalysed HONO production by visible light and HONO dissociation are hampered on calcite, unlike the process on silica. NO2 is a significant anthropogenic pollutant, and understanding its chemistry is crucial for explaining the high ROS levels and haze formation in polluted areas or prebiotic ROS generation. These findings emphasize how mineral substrates under water-restricted hydration conditions can trigger chemical pathways that are unexpected in the gas phase or under bulk conditions.

12.
J Am Chem Soc ; 146(30): 21052-21060, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39013148

RESUMO

Chlorine oxides play crucial roles in ozone depletion, and the final oxidation steps of chlorine oxide potentially result in the formation of chloric acid (HClO3) or perchloric acid (HClO4). Herein, the solvation and reactive uptake of three stable isomers of chlorine trioxide (Cl2O3), namely, ClOCl(O)O, ClClO3, and ClOOOCl, at the air-water interface were investigated using classical and hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) coupled with advanced free energy methods. Two distinct mechanisms were revealed for the hydrolysis of ClOCl(O)O and ClClO3: molecular and ionic mechanisms. A comparison of the computed free-energy profiles for the gaseous and air-water interfacial systems indicated that the air-water interface could markedly lower the free-energy barrier for ClO3- or HClO3 formation while stabilizing the product state. In particular, the hydrolysis of ClClO3 at the air-water interface was barrierless. In contrast, our calculations showed that the hydrolysis of ClOOOCl was very slow, indicating that ClOOOCl was inert to water at the air-water interface. This study provides theoretical evidence for the hypothesis that HClO3 is a sink for chlorine oxides and for the widespread distributions of HClO3 recently observed in the Arctic region.

13.
J Am Chem Soc ; 146(4): 2503-2513, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38237042

RESUMO

Clathrate hydrates reserved in the seabed are often dispersed in the pores of coarse-grained sediments; hence, their formation typically occurs under nanoconfinement. Herein, we show the first molecular dynamics (MD) simulation evidence of the spontaneous formation of two-dimensional (2D) clathrate hydrates on crystal surfaces without conventional nanoconfinement. The kinetic process of 2D clathrate formation is illustrated via simulated single-molecule deposition. 2D amorphous patterns are observed on various superhydrophilic face-centered cubic surfaces. Notably, the formation of 2D amorphous clathrate can occur over a wide range of temperatures, even at room temperature. The strong water-surface interaction, the characteristic properties of guest-gas molecules, and the underlying surface structure dictate the formation of 2D amorphous clathrates. Semiquantitative phase diagrams of 2D clathrates are constructed where representative patterns of 2D clathrates for characteristic gas molecules on prototypical Pd(111) and Pt(111) surfaces are confirmed by independent MD simulations. A tunable pattern of 2D amorphous clathrates is demonstrated by changing the lattice strain of the underlying substrate. Moreover, ab initio MD simulations confirm the stability of 2D amorphous clathrate. The underlining physical mechanism for 2D clathrate formation on superhydrophilic surfaces is elucidated, which offers deeper insight into the crucial role of water-surface interaction.

14.
J Am Chem Soc ; 146(31): 21742-21751, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39074151

RESUMO

The activation of halogens (X = Cl, Br, I) by N2O5 is linked to NOx sources, ozone concentrations, NO3 reactivity, and the chemistry of halide-containing aerosol particles. However, a detailed chemical mechanism is still lacking. Herein, we explored the chemistry of the N2O5···X- systems at the air-water interface. Two different reaction pathways were identified for the reaction of N2O5 with X- at the air-water interface: the formation of XNO2 or XONO, along with NO3-. In the case of the Cl- system, the ClNO2 generation pathway is more favorable, while for the Br- and I- systems, the formation of BrONO and IONO is barrierless, making them the predominant products. Furthermore, the mechanisms of formation of X2 from XNO2 and XONO were also investigated. The high energy barriers of reactions and the high free energies of the products compared to those of the reactants indicate that ClNO2 is stable at the air-water interface. Contrary to the widely held belief regarding X2 producing from the reaction of XNO2 with X-, our calculations demonstrate that BrONO and IONO initially form stable BrONO···Br- and IONO···I- complexes, which then subsequently react with Br- and I- to form Br3- and I3-, respectively. Finally, Br3- and I3- decompose to form Br2 and I2. These findings have significant implications for experimental interpretation and offer new insights into halogen cycling in the atmosphere.

15.
J Am Chem Soc ; 146(20): 14297-14306, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38722613

RESUMO

The triplet excited states of sulfur dioxide can be accessed in the UV region and have a lifetime large enough that they can react with atmospheric trace gases. In this work, we report high level ab initio calculations for the reaction of the a3B1 and b3A2 excited states of SO2 with weak and strong acidic species such as HCOOH and HNO3, aimed to extend the chemistry reported in previous studies with nonacidic H atoms (water and alkanes). The reactions investigated in this work are very versatile and follow different kinds of mechanisms, namely, proton-coupled electron transfer (pcet) and conventional hydrogen atom transfer (hat) mechanisms. The study provides new insights into a general and very important class of excited-state-promoted reactions, opening up interesting chemical perspectives for technological applications of photoinduced H-transfer reactions. It also reveals that atmospheric triplet chemistry is more significant than previously thought.

16.
J Am Chem Soc ; 146(6): 4162-4171, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38306246

RESUMO

Magnesium is an abundant metal element in space, and magnesium chemistry has vital importance in the evolution of interstellar medium (ISM) and circumstellar regions, such as the asymptotic giant branch star IRC+10216 where a variety of Mg compounds bearing H, C, N, and O have been detected and proposed as the important components in the gas-phase molecular clouds and solid-state dust grains. Herein, we report the formation and infrared spectroscopic characterization of the Mg-bearing molecules HMg, [Mg, N, C], [Mg, H, N, C], [Mg, N, C, O], and [Mg, H, N, C, O] from the reactions of Mg/Mg+ and the prebiotic isocyanic acid (HNCO) in the solid neon matrix. Based on their thermal diffusion and photochemical behavior, a complex reactivity landscape involving association, decomposition, and isomerization reactions of these Mg-bearing molecules is developed, which can not only help understand the chemical processes of the magnesium (iso)cyanides in astrochemistry but also provide implications on the presence of magnesium (iso)cyanates in the ISM and the chemical model for the dust grain surface reactions. It also provides a new paradigm of the key intermediate nature of the cationic complexes in the formation of neutral interstellar species.

17.
J Am Chem Soc ; 146(8): 5455-5460, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38359146

RESUMO

Sulfamic acid (NH2SO3H, SFA) is supposed to play an important role in aerosol new particle formation (NPF) in the atmosphere, and its formation mainly arises from the SO3-NH3 reaction system in which weakly bonded donor-acceptor complexes such as SO3···NH3 and isomeric HNSO2···H2O have been proposed as the key intermediates. In this study, we reveal the first spectroscopic observation of HNSO2···H2O in two forms in a solid Ar matrix at 10 K. The major form consists of two intermolecular H bonds by forming a six-membered ring structure with a calculated dissociation energy of 7.6 kcal mol-1 at the CCSD(T)-F12a/aug-cc-pVTZ level of theory. The less stable form resembles SO3···H2O in containing a pure chalcogen bond (S···O) with a dissociation energy of 7.2 kcal mol-1. The characterization of HNSO2···H2O with matrix-isolation IR spectroscopy is supported by D- and 18O-isotope labeling and quantum chemical calculations.

18.
J Am Chem Soc ; 146(33): 23598-23605, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39165248

RESUMO

Understanding ice nucleation and growth is of great interest to researchers due to its importance in the biological, cryopreservation, and environmental fields. However, microstructural investigations of ice on the molecular scale are still lacking. In this paper, a simple method is proposed to prepare quasi-2-dimensional ice Ih films, which have been characterized via cryogenic transmission electron microscope. The intersecting stacking faults of basal (BSF) and prismatic (PSF) types have been directly visualized and resolved with a notable first-time report of PSF in ice Ih. Moreover, the possible growth pathways of BSF, namely, the Ic phase, were elucidated by the theoretical calculations and the chair conformation of H2O molecules. This study offers valuable insights that can enhance researchers' understanding of the growth kinetics of crystalline ice.

19.
J Am Chem Soc ; 146(29): 20494-20499, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39001838

RESUMO

The photochemistry of nitrous acid (HONO), encompassing dissociation into OH and NO as well as the reverse association reaction, plays a pivotal role in atmospheric chemistry. Here, we report the direct observation of nitrosyl-O-hydroxide (HOON) in the photochemistry of HONO, employing matrix-isolation IR and UV-vis spectroscopy. Despite a barrier of approximately 30 kJ/mol, HOON undergoes spontaneous rearrangement to the more stable HONO isomer through quantum mechanical tunneling, with a half-life of 28 min at 4 K. Kinetic isotope effects and instanton theory calculations reveal that the tunneling process involves the concerted motion of the NO moiety (65.2%) and the hydrogen atom (32.3%). Our findings underscore the significance of HOON as a key intermediate in the photolytic dissociation-association cycle of HONO at low temperatures.

20.
J Am Chem Soc ; 146(2): 1467-1475, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38186050

RESUMO

We present a novel mechanism for the formation of photocatalytic oxidants in deliquescent NaCl particles, which can greatly promote the multiphase photo-oxidation of SO2 to produce sulfate. The photoexcitation of the [Cl--H3O+-O2] complex leads to the generation of Cl and OH radicals, which is the key reason for enhancing aqueous-phase oxidation and accelerating SO2 oxidation. The mass normalization rate of sulfate production from the multiphase photoreaction of SO2 on NaCl droplets could be estimated to be 0.80 × 10-4 µg·h-1 at 72% RH and 1.33 × 10-4 µg·h-1 at 81% RH, which is equivalent to the known O3 liquid-phase oxidation mechanism. Our findings highlight the significance of multiphase photo-oxidation of SO2 on NaCl particles as a non-negligible source of sulfate in coastal areas. Furthermore, this study underscores the importance of Cl- photochemistry in the atmosphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA