Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 583(7814): 154, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32555452

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nature ; 573(7772): 139-143, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31462771

RESUMO

Signal transducer and activator of transcription 3 (STAT3) has a critical role in regulating cell fate, inflammation and immunity1,2. Cytokines and growth factors activate STAT3 through kinase-mediated tyrosine phosphorylation and dimerization3,4. It remains unknown whether other factors promote STAT3 activation through different mechanisms. Here we show that STAT3 is post-translationally S-palmitoylated at the SRC homology 2 (SH2) domain, which promotes the dimerization and transcriptional activation of STAT3. Fatty acids can directly activate STAT3 by enhancing its palmitoylation, in synergy with cytokine stimulation. We further identified ZDHHC19 as a palmitoyl acyltransferase that regulates STAT3. Cytokine stimulation increases STAT3 palmitoylation by promoting the association between ZDHHC19 and STAT3, which is mediated by the SH3 domain of GRB2. Silencing ZDHHC19 blocks STAT3 palmitoylation and dimerization, and impairs the cytokine- and fatty-acid-induced activation of STAT3. ZDHHC19 is frequently amplified in multiple human cancers, including in 39% of lung squamous cell carcinomas. High levels of ZDHHC19 correlate with high levels of nuclear STAT3 in patient samples. In addition, knockout of ZDHHC19 in lung squamous cell carcinoma cells significantly blocks STAT3 activity, and inhibits the fatty-acid-induced formation of tumour spheres as well as tumorigenesis induced by high-fat diets in an in vivo mouse model. Our studies reveal that fatty-acid- and ZDHHC19-mediated palmitoylation are signals that regulate STAT3, which provides evidence linking the deregulation of palmitoylation to inflammation and cancer.


Assuntos
Aciltransferases/metabolismo , Ácidos Graxos/metabolismo , Lipoilação , Neoplasias Pulmonares/metabolismo , Fator de Transcrição STAT3/metabolismo , Aciltransferases/antagonistas & inibidores , Aciltransferases/química , Aciltransferases/deficiência , Animais , Carcinogênese , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Sequência Conservada , Cisteína/metabolismo , Modelos Animais de Doenças , Xenoenxertos , Humanos , Inflamação/metabolismo , Inflamação/patologia , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos SCID , Transplante de Neoplasias , Fosforilação , Multimerização Proteica , Fator de Transcrição STAT3/química , Transdução de Sinais , Domínios de Homologia de src
3.
Ann Intern Med ; 176(8): 1057-1066, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487210

RESUMO

BACKGROUND: Although statins are a class I recommendation for prevention of atherosclerotic cardiovascular disease and its complications, their use is suboptimal. Differential underuse may mediate disparities in cardiovascular health for systematically marginalized persons. OBJECTIVE: To estimate disparities in statin use by race-ethnicity-gender and to determine whether these potential disparities are explained by medical appropriateness of therapy and structural factors. DESIGN: Cross-sectional analysis. SETTING: National Health and Nutrition Examination Survey from 2015 to 2020. PARTICIPANTS: Persons eligible for statin therapy based on 2013 and 2018 American College of Cardiology/American Heart Association blood cholesterol guidelines. MEASUREMENTS: The independent variable was race-ethnicity-gender. The outcome of interest was use of a statin. Using the Institute of Medicine framework for examining unequal treatment, we calculated adjusted prevalence ratios (aPRs) to estimate disparities in statin use adjusted for age, disease severity, access to health care, and socioeconomic status relative to non-Hispanic White men. RESULTS: For primary prevention, we identified a lower prevalence of statin use that was not explained by measurable differences in disease severity or structural factors among non-Hispanic Black men (aPR, 0.73 [95% CI, 0.59 to 0.88]) and non-Mexican Hispanic women (aPR, 0.74 [CI, 0.53 to 0.95]). For secondary prevention, we identified a lower prevalence of statin use that was not explained by measurable differences in disease severity or structural factors for non-Hispanic Black men (aPR, 0.81 [CI, 0.64 to 0.97]), other/multiracial men (aPR, 0.58 [CI, 0.20 to 0.97]), Mexican American women (aPR, 0.36 [CI, 0.10 to 0.61]), non-Mexican Hispanic women (aPR, 0.57 [CI, 0.33 to 0.82), non-Hispanic White women (aPR, 0.69 [CI, 0.56 to 0.83]), and non-Hispanic Black women (aPR, 0.75 [CI, 0.57 to 0.92]). LIMITATION: Cross-sectional data; lack of geographic, language, or statin-dose data. CONCLUSION: Statin use disparities for several race-ethnicity-gender groups are not explained by measurable differences in medical appropriateness of therapy, access to health care, and socioeconomic status. These residual disparities may be partially mediated by unobserved processes that contribute to health inequity, including bias, stereotyping, and mistrust. PRIMARY FUNDING SOURCE: National Institutes of Health.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Disparidades em Assistência à Saúde , Inibidores de Hidroximetilglutaril-CoA Redutases , Adulto , Feminino , Humanos , Masculino , Aterosclerose/tratamento farmacológico , Aterosclerose/epidemiologia , Aterosclerose/etnologia , Aterosclerose/prevenção & controle , Negro ou Afro-Americano , Doenças Cardiovasculares/tratamento farmacológico , Estudos Transversais , Etnicidade , Hispânico ou Latino , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inquéritos Nutricionais , Estados Unidos/epidemiologia , Brancos , Disparidades em Assistência à Saúde/etnologia , Disparidades em Assistência à Saúde/estatística & dados numéricos
4.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34507993

RESUMO

Interleukin 6 (IL-6) is known to regulate the CD4 T cell function by inducing gene expression of a number of cytokines through activation of Stat3 transcription factor. Here, we reveal that IL-6 strengthens the mechanics of CD4 T cells. The presence of IL-6 during activation of mouse and human CD4 T cells enhances their motility (random walk and exploratory spread), resulting in an increase in travel distance and higher velocity. This is an intrinsic effect of IL-6 on CD4 T-cell fitness that involves an increase in mitochondrial Ca2+ Although Stat3 transcriptional activity is dispensable for this process, IL-6 uses mitochondrial Stat3 to enhance mitochondrial Ca2+-mediated motility of CD4 T cells. Thus, through a noncanonical pathway, IL-6 can improve competitive fitness of CD4 T cells by facilitating cell motility. These results could lead to alternative therapeutic strategies for inflammatory diseases in which IL-6 plays a pathogenic role.


Assuntos
Movimento Celular/fisiologia , Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais/efeitos dos fármacos
5.
J Biol Chem ; 298(2): 101531, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34953855

RESUMO

Cancer is often characterized by aberrant gene expression patterns caused by the inappropriate activation of transcription factors. Signal transducer and activator of transcription 3 (STAT3) is a key transcriptional regulator of many protumorigenic processes and is persistently activated in many types of human cancer. However, like many transcription factors, STAT3 has proven difficult to target clinically. To address this unmet clinical need, we previously developed a cell-based assay of STAT3 transcriptional activity and performed an unbiased and high-throughput screen of small molecules known to be biologically active in humans. We identified the antimicrobial drug pyrimethamine as a novel and specific inhibitor of STAT3 transcriptional activity. Here, we show that pyrimethamine does not significantly affect STAT3 phosphorylation, nuclear translocation, or DNA binding at concentrations sufficient to inhibit STAT3 transcriptional activity, suggesting a potentially novel mechanism of inhibition. To identify the direct molecular target of pyrimethamine and further elucidate the mechanism of action, we used a new quantitative proteome profiling approach called proteome integral solubility alteration coupled with a metabolomic analysis. We identified human dihydrofolate reductase as a target of pyrimethamine and demonstrated that the STAT3-inhibitory effects of pyrimethamine are the result of a deficiency in reduced folate downstream of dihydrofolate reductase inhibition, implicating folate metabolism in the regulation of STAT3 transcriptional activity. This study reveals a previously unknown regulatory node of the STAT3 pathway that may be important for the development of novel strategies to treat STAT3-driven cancers.


Assuntos
Anti-Infecciosos , Pirimetamina , Fator de Transcrição STAT3 , Tetra-Hidrofolato Desidrogenase , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Linhagem Celular Tumoral , Ácido Fólico/metabolismo , Humanos , Proteoma/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
6.
Breast Cancer Res ; 25(1): 24, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882838

RESUMO

BACKGROUND: Higher circulating prolactin has been associated with increased breast cancer risk. Prolactin binding to the prolactin receptor (PRLR) can activate the transcription factor STAT5, thus, we examined the association between plasma prolactin and breast cancer risk by tumor expression of PRLR, STAT5, and the upstream kinase JAK2. METHODS: Using data from 745 cases and 2454 matched controls in the Nurses' Health Study, we conducted polytomous logistic regression to examine the association between prolactin (> 11 ng/mL vs. ≤ 11 ng/mL) measured within 10 years of diagnosis and breast cancer risk by PRLR (nuclear [N], cytoplasmic [C]), phosphorylated STAT5 (pSTAT5; N, C), and phosphorylated JAK2 (pJAK2; C) tumor expression. Analyses were conducted separately in premenopausal (n = 168 cases, 765 controls) and postmenopausal women (n = 577 cases, 1689 controls). RESULTS: In premenopausal women, prolactin levels > 11 ng/mL were positively associated with risk of tumors positive for pSTAT5-N (OR 2.30, 95% CI 1.02-5.22) and pSTAT5-C (OR 1.64, 95% CI 1.01-2.65), but not tumors that were negative for these markers (OR 0.98, 95% CI 0.65-1.46 and OR 0.73, 95% CI 0.43-1.25; p-heterogeneity = 0.06 and 0.02, respectively). This was stronger when tumors were positive for both pSTAT5-N and pSTAT5-C (OR 2.88, 95% CI 1.14-7.25). No association was observed for PRLR or pJAK2 (positive or negative) and breast cancer risk among premenopausal women. Among postmenopausal women, plasma prolactin levels were positively associated with breast cancer risk irrespective of PRLR, pSTAT5, or pJAK2 expression (all p-heterogeneity ≥ 0.21). CONCLUSION: We did not observe clear differences in the association between plasma prolactin and breast cancer risk by tumor expression of PRLR or pJAK2, although associations for premenopausal women were observed for pSTAT5 positive tumors only. While additional studies are needed, this suggests that prolactin may act on human breast tumor development through alternative pathways.


Assuntos
Neoplasias da Mama , Prolactina , Feminino , Humanos , Neoplasias da Mama/epidemiologia , Prolactina/sangue , Fator de Transcrição STAT5
7.
Blood ; 137(24): 3403-3415, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33690798

RESUMO

Leukemias bearing fusions of the AF10/MLLT10 gene are associated with poor prognosis, and therapies targeting these fusion proteins (FPs) are lacking. To understand mechanisms underlying AF10 fusion-mediated leukemogenesis, we generated inducible mouse models of acute myeloid leukemia (AML) driven by the most common AF10 FPs, PICALM/CALM-AF10 and KMT2A/MLL-AF10, and performed comprehensive characterization of the disease using transcriptomic, epigenomic, proteomic, and functional genomic approaches. Our studies provide a detailed map of gene networks and protein interactors associated with key AF10 fusions involved in leukemia. Specifically, we report that AF10 fusions activate a cascade of JAK/STAT-mediated inflammatory signaling through direct recruitment of JAK1 kinase. Inhibition of the JAK/STAT signaling by genetic Jak1 deletion or through pharmacological JAK/STAT inhibition elicited potent antioncogenic effects in mouse and human models of AF10 fusion AML. Collectively, our study identifies JAK1 as a tractable therapeutic target in AF10-rearranged leukemias.


Assuntos
Carcinogênese , Rearranjo Gênico , Janus Quinases , Sistema de Sinalização das MAP Quinases/genética , Proteínas de Neoplasias , Fatores de Transcrição STAT , Fatores de Transcrição , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Feminino , Humanos , Janus Quinases/genética , Janus Quinases/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células U937
8.
Mol Cell ; 53(6): 867-79, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24530305

RESUMO

In response to tumor necrosis factor (TNF), NF-κB enters the nucleus and promotes inflammatory and stress-responsive gene transcription. Because NF-κB deregulation is associated with disease, one might expect strict control of NF-κB localization. However, nuclear NF-κB levels exhibit considerable cell-to-cell variability, even in unstimulated cells. To resolve this paradox and determine how transcription-inducing signals are encoded, we quantified single-cell NF-κB translocation dynamics and transcription in the same cells. We show that TNF-induced transcription correlates best with fold change in nuclear NF-κB, not absolute nuclear NF-κB abundance. Using computational modeling, we find that an incoherent feedforward loop, from competition for binding to κB motifs, could provide memory of the preligand state necessary for fold-change detection. Experimentally, we observed three gene-specific transcriptional patterns that our model recapitulates by modulating competition strength alone. Fold-change detection buffers against stochastic variation in signaling molecules and explains how cells tolerate variability in NF-κB abundance and localization.


Assuntos
Modelos Estatísticos , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Transcrição Gênica , Fator de Necrose Tumoral alfa/metabolismo , Sítios de Ligação , Ligação Competitiva , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Simulação por Computador , Regulação da Expressão Gênica , Células HeLa , Humanos , Ligantes , Imagem Molecular , NF-kappa B/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , RNA Mensageiro/genética , Transdução de Sinais , Análise de Célula Única , Fator de Necrose Tumoral alfa/genética
9.
Br J Cancer ; 125(4): 582-592, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34088988

RESUMO

BACKGROUND: Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with a dismal prognosis. There is increasing interest in targeting chromatin regulatory pathways in difficult-to-treat cancers. In preliminary studies, we found that KDM4A (lysine-specific histone demethylase 4) was overexpressed in MPM. METHODS: KDM4A protein expression was determined by immunohistochemistry or immunoblotting. Functional inhibition of KDM4A by targeted knockdown and small molecule drugs was correlated to cell growth using cell lines and a xenograft mouse model. Gene expression profiling was performed to identify KDM4A-dependent signature pathways. RESULTS: Levels of KDM4A were found to be significantly elevated in MPM patients compared to normal mesothelial tissue. Inhibiting the enzyme activity efficiently reduced cell growth in vitro and reduced tumour growth in vivo. KDM4A inhibitor-induced apoptosis was further enhanced by the BH3 mimetic navitoclax. KDM4A expression was associated with pathways involved in cell growth and DNA repair. Interestingly, inhibitors of the DNA damage and replication checkpoint regulators CHK1 (prexasertib) and WEE1 (adavosertib) within the DNA double-strand break repair pathway, cooperated in the inhibition of cell growth. CONCLUSIONS: The results establish a novel and essential role for KDM4A in growth in preclinical models of MPM and identify potential therapeutic approaches to target KDM4A-dependent vulnerabilities.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Mesotelioma Maligno/patologia , Regulação para Cima , Compostos de Anilina/administração & dosagem , Compostos de Anilina/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Mesotelioma Maligno/tratamento farmacológico , Mesotelioma Maligno/genética , Mesotelioma Maligno/metabolismo , Camundongos , Pirazinas/administração & dosagem , Pirazinas/farmacologia , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Pirimidinonas/administração & dosagem , Pirimidinonas/farmacologia , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Bioorg Med Chem ; 28(12): 115542, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32503696

RESUMO

The signal transducer and activator of transcription 3 (STAT3) protein is constitutively activated in several cancers. STAT3 activity can be blocked by inhibiting its Src Homology 2 (SH2) domain, but phosphotyrosine and its isosteres have poor bioavailability. In this work, we develop peptide-based inhibitors of STAT3-SH2 by combining chemical strategies that have proven effective for targeting other SH2 domains. These strategies include a STAT3-specific selectivity sequence, non-hydrolyzable phosphotyrosine isosteres, and a high-efficiency cell-penetrating peptide. Peptides that combined these three strategies had substantial biological stability and cytosolic delivery, as measured using highly quantitative cell-based assays. However, these peptides did not inhibit STAT3 activity in cells. By comparing in vitro binding affinity, cell penetration, and proteolytic stability, this work explores the delicate balance of factors that contribute to biological activity for peptidic inhibitors of STAT3.


Assuntos
Peptídeos/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Alanina/análogos & derivados , Alanina/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citosol/metabolismo , Humanos , Naftalenos/química , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia , Peptídeos Cíclicos/química , Ligação Proteica , Estabilidade Proteica , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/metabolismo , Domínios de Homologia de src
11.
Cancer Immunol Immunother ; 67(1): 13-23, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28875329

RESUMO

The transcription factor signal activator and transducer or transcription (STAT3), which regulates genes controlling proliferation, survival, and invasion, is activated inappropriately in many human cancers, including breast cancer. Activation of STAT3 can lead to both malignant cellular behavior and suppression of immune cell function in the tumor microenvironment. Through a chemical-biology screen, pyrimethamine (PYR), an FDA approved anti-microbial drug, was identified as an inhibitor of STAT3 function at concentrations known to be achieved safely in humans. We report that PYR shows therapeutic activity in two independent mouse models of breast cancer, with both direct tumor inhibitory and immune stimulatory effects. PYR-inhibited STAT3 activity in TUBO and TM40D-MB metastatic breast cancer cells in vitro and inhibited tumor cell proliferation and invasion into Matrigel basement membrane matrix. In tumor-transplanted mice, PYR had both direct and indirect tumor inhibitory effects. Tumor-bearing mice treated with PYR showed reduced STAT3 activation in tumor cells, attenuated tumor growth, and reduced tumor-associated inflammation. In addition, expression of Lamp1 by tumor infiltrating CD8+ T cells was elevated, indicating enhanced release of cytotoxic granules. These findings suggest that PYR may have beneficial effects in the treatment of breast cancer.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linfócitos T CD8-Positivos/imunologia , Pirimetamina/uso terapêutico , Fator de Transcrição STAT3/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Citotoxicidade Imunológica , Modelos Animais de Doenças , Feminino , Humanos , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Pirimetamina/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Evasão Tumoral , Estados Unidos
12.
Blood ; 128(14): 1845-1853, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27531676

RESUMO

The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is frequently activated inappropriately in a wide range of hematological and solid cancers, but clinically available therapies targeting STAT3 are lacking. Using a computational strategy to identify compounds opposing the gene expression signature of STAT3, we discovered atovaquone (Mepron), an antimicrobial approved by the US Food and Drug Administration, to be a potent STAT3 inhibitor. We show that, at drug concentrations routinely achieved clinically in human plasma, atovaquone inhibits STAT3 phosphorylation, the expression of STAT3 target genes, and the viability of STAT3-dependent hematological cancer cells. These effects were also observed with atovaquone treatment of primary blasts isolated from patients with acute myelogenous leukemia or acute lymphocytic leukemia. Atovaquone is not a kinase inhibitor but instead rapidly and specifically downregulates cell-surface expression of glycoprotein 130, which is required for STAT3 activation in multiple contexts. The administration of oral atovaquone to mice inhibited tumor growth and prolonged survival in a murine model of multiple myeloma. Finally, in patients with acute myelogenous leukemia treated with hematopoietic stem cell transplantation, extended use of atovaquone for Pneumocystis prophylaxis was associated with improved relapse-free survival. These findings establish atovaquone as a novel, clinically accessible STAT3 inhibitor with evidence of anticancer efficacy in both animal models and humans.


Assuntos
Antineoplásicos/farmacologia , Atovaquona/farmacologia , Descoberta de Drogas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Atovaquona/química , Atovaquona/uso terapêutico , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Receptor gp130 de Citocina/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Fator de Transcrição STAT3/metabolismo , Resultado do Tratamento
13.
J Immunol ; 194(7): 3180-90, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25725100

RESUMO

Maturation of dendritic cells (DCs) is required to induce T cell immunity, whereas immature DCs can induce immune tolerance. Although the transcription factor STAT5 is suggested to participate in DC maturation, its role in this process remains unclear. In this study, we investigated the effect of STAT5 inhibition on LPS-induced maturation of human monocyte-derived DCs (Mo-DCs). We inhibited STAT5 by treating Mo-DCs with JQ1, a selective inhibitor of BET epigenetic readers, which can suppress STAT5 function. We found that JQ1 inhibits LPS-induced STAT5 phosphorylation and nuclear accumulation, thereby attenuating its transcriptional activity in Mo-DCs. The diminished STAT5 activity results in impaired maturation of Mo-DCs, as indicated by defective upregulation of costimulatory molecules and CD83, as well as reduced secretion of IL-12p70. Expression of constitutively activated STAT5 in JQ1-treated Mo-DCs overcomes the effects of JQ1 and enhances the expression of CD86, CD83, and IL-12. The activation of STAT5 in Mo-DCs is mediated by GM-CSF produced following LPS stimulation. Activated STAT5 then leads to increased expression of both GM-CSF and GM-CSFR, triggering an autocrine loop that further enhances STAT5 signaling and enabling Mo-DCs to acquire a more mature phenotype. JQ1 decreases the ability of Mo-DCs to induce allogeneic CD4(+) and CD8(+) T cell proliferation and production of proinflammatory cytokines. Furthermore, JQ1 leads to a reduced generation of inflammatory CD8(+) T cells and decreased Th1 differentiation. Thus, JQ1 impairs LPS-induced Mo-DC maturation by inhibiting STAT5 activity, thereby generating cells that can only weakly stimulate an adaptive-immune response. Therefore, JQ1 could have beneficial effects in treating T cell-mediated inflammatory diseases.


Assuntos
Azepinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Fator de Transcrição STAT5/antagonistas & inibidores , Triazóis/farmacologia , Antígenos de Superfície/metabolismo , Diferenciação Celular/imunologia , Citocinas/biossíntese , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Voluntários Saudáveis , Humanos , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Janus Quinases/antagonistas & inibidores , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Modelos Biológicos , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Fenótipo , Domínios e Motivos de Interação entre Proteínas , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
14.
Water Environ Res ; 89(8): 724-731, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28332469

RESUMO

The need to increase the peak wet weather secondary treatment capacity of the City of Akron, Ohio, Water Reclamation Facility (WRF) provided the opportunity to test an integrated methodology for maximizing the peak wet weather secondary treatment capacity of activated sludge systems. An initial investigation, consisting of process modeling of the secondary treatment system and computational fluid dynamics (CFD) analysis of the existing relatively shallow secondary clarifiers (3.3 and 3.7 m sidewater depth in 30.5 m diameter units), indicated that a significant increase in capacity from 416 000 to 684 000 m3/d or more was possible by adding step feed capabilities to the existing bioreactors and upgrading the existing secondary clarifiers. One of the six treatment units at the WRF was modified, and an extensive 2-year testing program was conducted to determine the total peak wet weather secondary treatment capacity achievable. The results demonstrated that a peak wet weather secondary treatment capacity approaching 974 000 m3/d is possible as long as secondary clarifier solids and hydraulic loadings could be separately controlled using the step feed capability provided. Excellent sludge settling characteristics are routinely experienced at the City of Akron WRF, raising concerns that the identified peak wet weather secondary treatment capacity could not be maintained should sludge settling characteristics deteriorate for some reason. Computational fluid dynamics analysis indicated that the impact of the deterioration of sludge settling characteristics could be mitigated and the identified peak wet weather secondary treatment capacity maintained by further use of the step feed capability provided to further reduce secondary clarifier solids loading rates at the identified high surface overflow rates. The results also demonstrated that effluent limits not only for total suspended solids (TSS) and five-day carbonaceous biochemical oxygen demand (cBOD5) could be maintained, but also for ammonia-nitrogen and total phosphorous (TP). Although hydraulic limitations in other parts of the WRP prevent this full capacity to be realized, the City is proceeding to implement the modifications identified using this integrated methodology.


Assuntos
Drenagem Sanitária/métodos , Instalações de Eliminação de Resíduos , Eliminação de Resíduos Líquidos/métodos , Purificação da Água , Chuva , Movimentos da Água
15.
J Biol Chem ; 290(39): 23553-62, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26242912

RESUMO

Bioactive phytochemicals can suppress the growth of malignant cells, and investigation of the mechanisms responsible can assist in the identification of novel therapeutic strategies for cancer therapy. Ginger has been reported to exhibit potent anti-cancer effects, although previous reports have often focused on a narrow range of specific compounds. Through a direct comparison of various ginger compounds, we determined that gingerenone A selectively kills cancer cells while exhibiting minimal toxicity toward normal cells. Kinase array screening revealed JAK2 and S6K1 as the molecular targets primarily responsible for gingerenone A-induced cancer cell death. The effect of gingerenone A was strongly associated with relative phosphorylation levels of JAK2 and S6K1, and administration of gingerenone A significantly suppressed tumor growth in vivo. More importantly, the combined inhibition of JAK2 and S6K1 by commercial inhibitors selectively induced apoptosis in cancer cells, whereas treatment with either agent alone did not. These findings provide rationale for dual targeting of JAK2 and S6K1 in cancer for a combinatorial therapeutic approach.


Assuntos
Apoptose/efeitos dos fármacos , Diarileptanoides/farmacologia , Inibidores Enzimáticos/farmacologia , Janus Quinase 2/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Janus Quinase 2/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo
16.
Am J Hematol ; 96(4): E95-E98, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33373063
17.
Water Sci Technol ; 74(2): 324-32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27438236

RESUMO

The performance characteristics of relatively shallow (3.3 and 3.7 m sidewater depth in 30.5 m diameter) activated sludge secondary clarifiers were extensively evaluated during a 2-year testing program at the City of Akron Water Reclamation Facility (WRF), Ohio, USA. Testing included hydraulic and solids loading stress tests, and measurement of sludge characteristics (zone settling velocity (ZSV), dispersed and flocculated total suspended solids), and the results were used to calibrate computational fluid dynamic (CFD) models of the various clarifiers tested. The results demonstrated that good performance could be sustained at surface overflow rates in excess of 3 m/h, as long as the clarifier influent mixed liquor suspended solids (MLSS) concentration was controlled to below critical values. The limiting solids loading rate (SLR) was significantly lower than the value predicted by conventional solids flux analysis based on the measured ZSV/MLSS relationship. CFD analysis suggested that this resulted because mixed liquor entering the clarifier was being directed into the settled sludge blanket, diluting it and also creating a 'thin' concentration sludge blanket that overlays the thicker concentration sludge blanket typically expected. These results indicate the need to determine the allowable SLR for shallow clarifiers using approaches other than traditional solids flux analysis. A combination of actual testing and CFD analyses are demonstrated here to be effective in doing so.


Assuntos
Esgotos/análise , Eliminação de Resíduos Líquidos/métodos , Floculação , Modelos Teóricos , Ohio
18.
J Proteome Res ; 14(6): 2367-84, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25927954

RESUMO

This review discusses extracellular vesicles (EVs), which are submicron-scale, anuclear, phospholipid bilayer membrane enclosed vesicles that contain lipids, metabolites, proteins, and RNA (micro and messenger). They are shed from many, if not all, cell types and are present in biological fluids and conditioned cell culture media. The term EV, as coined by the International Society of Extracellular Vesicles (ISEV), encompasses exosomes (30-100 nm in diameter), microparticles (100-1000 nm), apoptotic blebs, and other EV subsets. EVs have been implicated in cell-cell communication, coagulation, inflammation, immune response modulation, and disease progression. Multiple studies report that EV secretion from disease-affected cells contributes to disease progression, e.g., tumor niche formation and cancer metastasis. EVs are attractive sources of biomarkers due to their biological relevance and relatively noninvasive accessibility from a range of physiological fluids. This review is focused on the molecular profiling of the protein and lipid constituents of EVs, with emphasis on mass-spectrometry-based "omic" analytical techniques. The challenges in the purification and molecular characterization of EVs, including contamination of isolates and limitations in sample quantities, are discussed along with possible solutions. Finally, the review discusses the limited but growing investigation of post-translational modifications of EV proteins and potential strategies for future in-depth molecular characterization of EVs.


Assuntos
Vesículas Extracelulares/química , Lipídeos/química , Espectrometria de Massas/métodos , Proteômica , Animais , Meios de Cultivo Condicionados , Eletroforese em Gel Bidimensional , Humanos
19.
J Am Soc Nephrol ; 25(1): 105-18, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24158981

RESUMO

Kidney injury molecule-1 (KIM-1)/T cell Ig and mucin domain-containing protein-1 (TIM-1) is upregulated more than other proteins after AKI, and it is highly expressed in renal damage of various etiologies. In this capacity, KIM-1/TIM-1 acts as a phosphatidylserine receptor on the surface of injured proximal tubular epithelial cells, mediating phagocytosis of apoptotic cells, and it may also act as a costimulatory molecule for immune cells. Despite recognition of KIM-1 as an important therapeutic target for kidney disease, the regulators of KIM-1 transcription in the kidney remain unknown. Using a bioinformatics approach, we identified upstream regulators of KIM-1 after AKI. In response to tubular injury in rat and human kidneys or oxidant stress in human proximal tubular epithelial cells (HPTECs), KIM-1 expression increased significantly in a manner that corresponded temporally and regionally with increased phosphorylation of checkpoint kinase 1 (Chk1) and STAT3. Both ischemic and oxidant stress resulted in a dramatic increase in reactive oxygen species that phosphorylated and activated Chk1, which subsequently bound to STAT3, phosphorylating it at S727. Furthermore, STAT3 bound to the KIM-1 promoter after ischemic and oxidant stress, and pharmacological or genetic induction of STAT3 in HPTECs increased KIM-1 mRNA and protein levels. Conversely, inhibition of STAT3 using siRNAs or dominant negative mutants reduced KIM-1 expression in a kidney cancer cell line (769-P) that expresses high basal levels of KIM-1. These observations highlight Chk1 and STAT3 as critical upstream regulators of KIM-1 expression after AKI and may suggest novel approaches for therapeutic intervention.


Assuntos
Injúria Renal Aguda/metabolismo , Moléculas de Adesão Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Quinases/metabolismo , Receptores Virais/metabolismo , Fator de Transcrição STAT3/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/terapia , Animais , Moléculas de Adesão Celular/genética , Linhagem Celular , Quinase 1 do Ponto de Checagem , Biologia Computacional , Dano ao DNA , Regulação da Expressão Gênica , Receptor Celular 1 do Vírus da Hepatite A , Humanos , Rim/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Estresse Oxidativo , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Ratos , Ratos Wistar , Receptores Virais/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética
20.
Cancers (Basel) ; 16(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611065

RESUMO

Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), which regulate many critical cellular processes such as proliferation, apoptosis, and differentiation, are frequently activated inappropriately in a wide spectrum of human cancers. Multiple signaling pathways converge on the STATs, highlighting their importance in the development and progression of oncogenic diseases. STAT3 and STAT5 are two members of the STAT protein family that are the most frequently activated in cancers and can drive cancer pathogenesis directly. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations in the last decade, although effective treatment options remain limited. In this review, we investigate the specific roles of STAT3 and STAT5 in normal physiology and cancer biology, discuss the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators, and offer insights into novel therapeutic strategies to identify STAT inhibitors as cancer therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA