Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 462
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(10): e26768, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38949537

RESUMO

Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brain-age) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brain-age has highlighted the need for robust and publicly available brain-age models pre-trained on data from large samples of healthy individuals. To address this need we have previously released a developmental brain-age model. Here we expand this work to develop, empirically validate, and disseminate a pre-trained brain-age model to cover most of the human lifespan. To achieve this, we selected the best-performing model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brain-age prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5-90 years; 53.59% female). The pre-trained models were tested for cross-dataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8-80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9-25 years; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two age-bins (5-40 and 40-90 years) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brain-age prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain (https://centilebrain.org/#/brainAGE2), an open-science, web-based platform for individualized neuroimaging metrics.


Assuntos
Envelhecimento , Encéfalo , Imageamento por Ressonância Magnética , Humanos , Adolescente , Feminino , Idoso , Adulto , Criança , Adulto Jovem , Masculino , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Idoso de 80 Anos ou mais , Pré-Escolar , Pessoa de Meia-Idade , Envelhecimento/fisiologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Neuroimagem/normas , Tamanho da Amostra
2.
Psychol Med ; : 1-10, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801094

RESUMO

BACKGROUND: Psychiatric disorders and type 2 diabetes mellitus (T2DM) are heritable, polygenic, and often comorbid conditions, yet knowledge about their potential shared familial risk is lacking. We used family designs and T2DM polygenic risk score (T2DM-PRS) to investigate the genetic associations between psychiatric disorders and T2DM. METHODS: We linked 659 906 individuals born in Denmark 1990-2000 to their parents, grandparents, and aunts/uncles using population-based registers. We compared rates of T2DM in relatives of children with and without a diagnosis of any or one of 11 specific psychiatric disorders, including neuropsychiatric and neurodevelopmental disorders, using Cox regression. In a genotyped sample (iPSYCH2015) of individuals born 1981-2008 (n = 134 403), we used logistic regression to estimate associations between a T2DM-PRS and these psychiatric disorders. RESULTS: Among 5 235 300 relative pairs, relatives of individuals with a psychiatric disorder had an increased risk for T2DM with stronger associations for closer relatives (parents:hazard ratio = 1.38, 95% confidence interval 1.35-1.42; grandparents: 1.14, 1.13-1.15; and aunts/uncles: 1.19, 1.16-1.22). In the genetic sample, one standard deviation increase in T2DM-PRS was associated with an increased risk for any psychiatric disorder (odds ratio = 1.11, 1.08-1.14). Both familial T2DM and T2DM-PRS were significantly associated with seven of 11 psychiatric disorders, most strongly with attention-deficit/hyperactivity disorder and conduct disorder, and inversely with anorexia nervosa. CONCLUSIONS: Our findings of familial co-aggregation and higher T2DM polygenic liability associated with psychiatric disorders point toward shared familial risk. This suggests that part of the comorbidity is explained by shared familial risks. The underlying mechanisms still remain largely unknown and the contributions of genetics and environment need further investigation.

3.
Eur Arch Psychiatry Clin Neurosci ; 274(1): 45-58, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37378697

RESUMO

Impaired response inhibition is commonly present in individuals with attention-deficit/hyperactivity disorder (ADHD) and their unaffected relatives, suggesting impaired response inhibition as a candidate endophenotype in ADHD. Therefore, we explored whether behavioral and neural correlates of response inhibition are related to polygenic risk scores for ADHD (PRS-ADHD). We obtained functional magnetic resonance imaging of neural activity and behavioral measures during a stop-signal task in the NeuroIMAGE cohort, where inattention and hyperactivity-impulsivity symptoms were assessed with the Conners Parent Rating Scales. Our sample consisted of 178 ADHD cases, 103 unaffected siblings, and 173 controls (total N = 454; 8-29 years), for whom genome-wide genotyping was available. PRS-ADHD was constructed using the PRSice-2 software. We found PRS-ADHD to be associated with ADHD symptom severity, a slower and more variable response to Go-stimuli, and altered brain activation during response inhibition in several regions of the bilateral fronto-striatal network. Mean reaction time and intra-individual reaction time variability mediated the association of PRS-ADHD with ADHD symptoms (total, inattention, hyperactivity-impulsivity), and activity in the left temporal pole and anterior parahippocampal gyrus during failed inhibition mediated the relationship of PRS-ADHD with hyperactivity-impulsivity. Our findings indicate that PRS-ADHD are related to ADHD severity on a spectrum of clinical, sub-threshold, and normal levels; more importantly, we show a shared genetic etiology of ADHD and behavioral and neural correlates of response inhibition. Given the modest sample size of our study, future studies with higher power are warranted to explore mediation effects, suggesting that genetic liability to ADHD may adversely affect attention regulation on the behavioral level and point to a possible response inhibition-related mechanistic pathway from PRS-ADHD to hyperactivity-impulsivity.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Humanos , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Estudos de Casos e Controles , Encéfalo/diagnóstico por imagem , Atenção/fisiologia , Tempo de Reação/fisiologia , Imageamento por Ressonância Magnética
4.
Eur Child Adolesc Psychiatry ; 33(9): 3055-3066, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38329535

RESUMO

Disruptive behavior disorders [including conduct disorder (CD) and oppositional defiant disorder (ODD)] are common childhood and adolescent psychiatric conditions often linked to altered arousal. The recommended first-line treatment is multi-modal therapy and includes psychosocial and behavioral interventions. Their modest effect sizes along with clinically and biologically heterogeneous phenotypes emphasize the need for innovative personalized treatment targeting impaired functions such as arousal dysregulation. A total of 37 children aged 8-14 years diagnosed with ODD/CD were randomized to 20 sessions of individualized arousal biofeedback using skin conductance levels (SCL-BF) or active treatment as usual (TAU) including psychoeducation and cognitive-behavioral elements. The primary outcome was the change in parents´ ratings of aggressive behavior measured by the Modified Overt Aggression Scale. Secondary outcome measures were subscales from the Child Behavior Checklist, the Inventory of Callous-Unemotional traits, and the Reactive-Proactive Aggression Questionnaire. The SCL-BF treatment was neither superior nor inferior to the active TAU. Both groups showed reduced aggression after treatment with small effects for the primary outcome and large effects for some secondary outcomes. Importantly, successful learning of SCL self-regulation was related to reduced aggression at post-assessment. Individualized SCL-BF was not inferior to active TAU for any treatment outcome with improvements in aggression. Further, participants were on average able to self-regulate their SCL, and those who best learned self-regulation showed the highest clinical improvement, pointing to specificity of SCL-BF regulation for improving aggression. Further studies with larger samples and improved methods, for example by developing BF for mobile use in ecologically more valid settings are warranted.


Assuntos
Agressão , Nível de Alerta , Transtornos de Deficit da Atenção e do Comportamento Disruptivo , Biorretroalimentação Psicológica , Humanos , Criança , Adolescente , Masculino , Feminino , Transtornos de Deficit da Atenção e do Comportamento Disruptivo/terapia , Nível de Alerta/fisiologia , Agressão/psicologia , Biorretroalimentação Psicológica/métodos , Resposta Galvânica da Pele/fisiologia , Resultado do Tratamento , Terapia Cognitivo-Comportamental/métodos , Transtorno da Conduta/terapia , Transtorno da Conduta/psicologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-39016115

RESUMO

Genome-wide association studies (GWAS) have provided valuable insights into the genetic basis of neuropsychiatric disorders and highlighted their complexity. Careful consideration of the polygenicity and complex genetic architecture could aid in the understanding of the underlying brain mechanisms. We introduce an innovative approach to polygenic scoring, utilizing imaging-derived phenotypes (IDPs) to predict a clinical phenotype. We leveraged IDP GWAS data from the UK Biobank, to create polygenic imaging-derived scores (PIDSs). As a proof-of-concept, we assessed genetic variations in brain structure between individuals with ADHD and unaffected controls across three NeuroIMAGE waves (n = 954). Out of the 94 PIDS, 72 exhibited significant associations with their corresponding IDPs in an independent sample. Notably, several global measures, including cerebellum white matter, cerebellum cortex, and cerebral white matter, displayed substantial variance explained for their respective IDPs, ranging from 3% to 5.7%. Conversely, the associations between each IDP and the clinical ADHD phenotype were relatively weak. These findings highlight the growing power of GWAS in structural neuroimaging traits, enabling the construction of polygenic scores that accurately reflect the underlying polygenic architecture. However, to establish robust connections between PIDS and behavioral or clinical traits such as ADHD, larger samples are needed. Our novel approach to polygenic risk scoring offers a valuable tool for researchers in the field of psychiatric genetics.

6.
Am J Med Genet B Neuropsychiatr Genet ; 195(1): e32951, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37334623

RESUMO

The dense co-occurrence of psychiatric disorders questions the categorical classification tradition and motivates efforts to establish dimensional constructs with neurobiological foundations that transcend diagnostic boundaries. In this study, we examined the genetic liability for eight major psychiatric disorder phenotypes under both a disorder-specific and a transdiagnostic framework. The study sample (n = 513) was deeply phenotyped, consisting of 452 patients from tertiary care with mood disorders, anxiety disorders (ANX), attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders, and/or substance use disorders (SUD) and 61 unaffected comparison individuals. We computed subject-specific polygenic risk score (PRS) profiles and assessed their associations with psychiatric diagnoses, comorbidity status, as well as cross-disorder behavioral dimensions derived from a rich battery of psychopathology assessments. High PRSs for depression were unselectively associated with the diagnosis of SUD, ADHD, ANX, and mood disorders (p < 1e-4). In the dimensional approach, four distinct functional domains were uncovered, namely the negative valence, social, cognitive, and regulatory systems, closely matching the major functional domains proposed by the Research Domain Criteria (RDoC) framework. Critically, the genetic predisposition for depression was selectively reflected in the functional aspect of negative valence systems (R2 = 0.041, p = 5e-4) but not others. This study adds evidence to the ongoing discussion about the misalignment between current psychiatric nosology and the underlying psychiatric genetic etiology and underscores the effectiveness of the dimensional approach in both the functional characterization of psychiatric patients and the delineation of the genetic liability for psychiatric disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Psiquiatria , Transtornos Relacionados ao Uso de Substâncias , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/genética , Psicopatologia , Transtornos de Ansiedade , Herança Multifatorial/genética
7.
Psychol Med ; 53(9): 4012-4021, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35450543

RESUMO

BACKGROUND: Disruptive behavior disorders (DBD) are heterogeneous at the clinical and the biological level. Therefore, the aims were to dissect the heterogeneous neurodevelopmental deviations of the affective brain circuitry and provide an integration of these differences across modalities. METHODS: We combined two novel approaches. First, normative modeling to map deviations from the typical age-related pattern at the level of the individual of (i) activity during emotion matching and (ii) of anatomical images derived from DBD cases (n = 77) and controls (n = 52) aged 8-18 years from the EU-funded Aggressotype and MATRICS consortia. Second, linked independent component analysis to integrate subject-specific deviations from both modalities. RESULTS: While cases exhibited on average a higher activity than would be expected for their age during face processing in regions such as the amygdala when compared to controls these positive deviations were widespread at the individual level. A multimodal integration of all functional and anatomical deviations explained 23% of the variance in the clinical DBD phenotype. Most notably, the top marker, encompassing the default mode network (DMN) and subcortical regions such as the amygdala and the striatum, was related to aggression across the whole sample. CONCLUSIONS: Overall increased age-related deviations in the amygdala in DBD suggest a maturational delay, which has to be further validated in future studies. Further, the integration of individual deviation patterns from multiple imaging modalities allowed to dissect some of the heterogeneity of DBD and identified the DMN, the striatum and the amygdala as neural signatures that were associated with aggression.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Agressão/psicologia , Emoções , Transtornos de Deficit da Atenção e do Comportamento Disruptivo , Mapeamento Encefálico
8.
Mol Psychiatry ; 27(1): 38-48, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526822

RESUMO

Different psychiatric disorders and symptoms are highly correlated in the general population. A general psychopathology factor (or "P-factor") has been proposed to efficiently describe this covariance of psychopathology. Recently, genetic and neuroimaging studies also derived general dimensions that reflect densely correlated genomic and neural effects on behaviour and psychopathology. While these three types of general dimensions show striking parallels, it is unknown how they are conceptually related. Here, we provide an overview of these three general dimensions, and suggest a unified interpretation of their nature and underlying mechanisms. We propose that the general dimensions reflect, in part, a combination of heritable 'environmental' factors, driven by a dense web of gene-environment correlations. This perspective calls for an update of the traditional endophenotype framework, and encourages methodological innovations to improve models of gene-brain-environment relationships in all their complexity. We propose concrete approaches, which by taking advantage of the richness of current large databases will help to better disentangle the complex nature of causal factors underlying psychopathology.


Assuntos
Genômica , Transtornos Mentais , Encéfalo , Humanos , Transtornos Mentais/genética , Transtornos Mentais/psicologia , Neuroimagem , Psicopatologia
9.
Mol Psychiatry ; 27(11): 4464-4473, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35948661

RESUMO

Common variation in the gene encoding the neuron-specific RNA splicing factor RNA Binding Fox-1 Homolog 1 (RBFOX1) has been identified as a risk factor for several psychiatric conditions, and rare genetic variants have been found causal for autism spectrum disorder (ASD). Here, we explored the genetic landscape of RBFOX1 more deeply, integrating evidence from existing and new human studies as well as studies in Rbfox1 knockout mice. Mining existing data from large-scale studies of human common genetic variants, we confirmed gene-based and genome-wide association of RBFOX1 with risk tolerance, major depressive disorder and schizophrenia. Data on six mental disorders revealed copy number losses and gains to be more frequent in ASD cases than in controls. Consistently, RBFOX1 expression appeared decreased in post-mortem frontal and temporal cortices of individuals with ASD and prefrontal cortex of individuals with schizophrenia. Brain-functional MRI studies demonstrated that carriers of a common RBFOX1 variant, rs6500744, displayed increased neural reactivity to emotional stimuli, reduced prefrontal processing during cognitive control, and enhanced fear expression after fear conditioning, going along with increased avoidance behaviour. Investigating Rbfox1 neuron-specific knockout mice allowed us to further specify the role of this gene in behaviour. The model was characterised by pronounced hyperactivity, stereotyped behaviour, impairments in fear acquisition and extinction, reduced social interest, and lack of aggression; it provides excellent construct and face validity as an animal model of ASD. In conclusion, convergent translational evidence shows that common variants in RBFOX1 are associated with a broad spectrum of psychiatric traits and disorders, while rare genetic variation seems to expose to early-onset neurodevelopmental psychiatric disorders with and without developmental delay like ASD, in particular. Studying the pleiotropic nature of RBFOX1 can profoundly enhance our understanding of mental disorder vulnerability.


Assuntos
Transtorno do Espectro Autista , Transtorno Depressivo Maior , Transtornos Mentais , Animais , Camundongos , Humanos , Transtorno do Espectro Autista/genética , Transtorno Depressivo Maior/genética , Estudo de Associação Genômica Ampla , Transtornos Mentais/genética , Camundongos Knockout , Fatores de Processamento de RNA/genética
10.
Mol Psychiatry ; 27(4): 2114-2125, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35136228

RESUMO

Small average differences in the left-right asymmetry of cerebral cortical thickness have been reported in individuals with autism spectrum disorder (ASD) compared to typically developing controls, affecting widespread cortical regions. The possible impacts of these regional alterations in terms of structural network effects have not previously been characterized. Inter-regional morphological covariance analysis can capture network connectivity between different cortical areas at the macroscale level. Here, we used cortical thickness data from 1455 individuals with ASD and 1560 controls, across 43 independent datasets of the ENIGMA consortium's ASD Working Group, to assess hemispheric asymmetries of intra-individual structural covariance networks, using graph theory-based topological metrics. Compared with typical features of small-world architecture in controls, the ASD sample showed significantly altered average asymmetry of networks involving the fusiform, rostral middle frontal, and medial orbitofrontal cortex, involving higher randomization of the corresponding right-hemispheric networks in ASD. A network involving the superior frontal cortex showed decreased right-hemisphere randomization. Based on comparisons with meta-analyzed functional neuroimaging data, the altered connectivity asymmetry particularly affected networks that subserve executive functions, language-related and sensorimotor processes. These findings provide a network-level characterization of altered left-right brain asymmetry in ASD, based on a large combined sample. Altered asymmetrical brain development in ASD may be partly propagated among spatially distant regions through structural connectivity.


Assuntos
Transtorno do Espectro Autista , Encéfalo , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais
11.
J Child Psychol Psychiatry ; 64(6): 845-847, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37171536

RESUMO

People with ADHD in our society struggle, and they often report that they experience a lack of full acceptance in society. The realization that the current situation is suboptimal for individuals with ADHD and for society as a whole leads to a call of researchers, clinicians, and people with lived experience and their families for a modernized concept of ADHD. This new concept should take the discourse on ADHD to the next level: from a limited, symptom- and impairment-driven paradigm to a dynamic model that acknowledges ADHD's heterogeneity and integrates weaknesses and strengths, focused on individual trajectories in functioning and self-management.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/terapia
12.
J Child Psychol Psychiatry ; 64(4): 506-532, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36220605

RESUMO

The science of attention-deficit/hyperactivity disorder (ADHD) is motivated by a translational goal - the discovery and exploitation of knowledge about the nature of ADHD to the benefit of those individuals whose lives it affects. Over the past fifty years, scientific research has made enormous strides in characterizing the ADHD condition and in understanding its correlates and causes. However, the translation of these scientific insights into clinical benefits has been limited. In this review, we provide a selective and focused survey of the scientific field of ADHD, providing our personal perspectives on what constitutes the scientific consensus, important new leads to be highlighted, and the key outstanding questions to be addressed going forward. We cover two broad domains - clinical characterization and, risk factors, causal processes and neuro-biological pathways. Part one focuses on the developmental course of ADHD, co-occurring characteristics and conditions, and the functional impact of living with ADHD - including impairment, quality of life, and stigma. In part two, we explore genetic and environmental influences and putative mediating brain processes. In the final section, we reflect on the future of the ADHD construct in the light of cross-cutting scientific themes and recent conceptual reformulations that cast ADHD traits as part of a broader spectrum of neurodivergence.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/genética , Qualidade de Vida , Encéfalo , Fenótipo , Estigma Social
13.
EMBO Rep ; 22(10): e48018, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34402565

RESUMO

Striated muscle undergoes remodelling in response to mechanical and physiological stress, but little is known about the integration of such varied signals in the myofibril. The interaction of the elastic kinase region from sarcomeric titin (A168-M1) with the autophagy receptors Nbr1/p62 and MuRF E3 ubiquitin ligases is well suited to link mechanosensing with the trophic response of the myofibril. To investigate the mechanisms of signal cross-talk at this titin node, we elucidated its 3D structure, analysed its response to stretch using steered molecular dynamics simulations and explored its functional relation to MuRF1 and Nbr1/p62 using cellular assays. We found that MuRF1-mediated ubiquitination of titin kinase promotes its scaffolding of Nbr1/p62 and that the process can be dynamically down-regulated by the mechanical unfolding of a linker sequence joining titin kinase with the MuRF1 receptor site in titin. We propose that titin ubiquitination is sensitive to the mechanical state of the sarcomere, the regulation of sarcomere targeting by Nbr1/p62 being a functional outcome. We conclude that MuRF1/Titin Kinase/Nbr1/p62 constitutes a distinct assembly that predictably promotes sarcomere breakdown in inactive muscle.


Assuntos
Autofagia , Sarcômeros , Conectina/genética , Conectina/metabolismo , Músculo Esquelético/metabolismo , Sarcômeros/metabolismo , Ubiquitinação
14.
Eur Child Adolesc Psychiatry ; 32(12): 2415-2425, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36127566

RESUMO

Youth with disruptive behavior showing high callous-unemotional (CU) traits and proactive aggression are often assumed to exhibit distinct impairments in emotion recognition from those showing mainly reactive aggression. Yet, reactive and proactive aggression and CU traits may co-occur to varying degrees across individuals. We aimed to investigate emotion recognition in more homogeneous clusters based on these three dimensions. In a sample of 243 youth (149 with disruptive behavior problems and 94 controls) aged 8-18 years, we used model-based clustering on self-report measures of CU traits and reactive and proactive aggression and compared the resulting clusters on emotion recognition (accuracy and response bias) and working memory. In addition to a Low and Low-Moderate symptom cluster, we identified two high CU clusters. The CU-Reactive cluster showed high reactive and low-to-medium proactive aggression; the CU-Mixed cluster showed high reactive and proactive aggression. Both CU clusters showed impaired fear recognition and working memory, whereas the CU-Reactive cluster also showed impaired recognition of disgust and sadness, partly explained by poor working memory, as well as a response bias for anger and happiness. Our results confirm the importance of CU traits as a core dimension along which youth with disruptive behavior may be characterized, yet challenge the view that high CU traits are closely linked to high proactive aggression per se. Notably, distinct neurocognitive processes may play a role in youth with high CU traits and reactive aggression with lower versus higher proactive aggression.


Assuntos
Transtorno da Conduta , Comportamento Problema , Humanos , Adolescente , Transtorno da Conduta/psicologia , Emoções/fisiologia , Agressão/psicologia , Medo
15.
Neurobiol Dis ; 163: 105587, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923109

RESUMO

Monoamine neurotransmitter abundance affects motor control, emotion, and cognitive function and is regulated by monoamine oxidases. Among these, Monoamine oxidase A (MAOA) catalyzes the degradation of dopamine, norepinephrine, and serotonin into their inactive metabolites. Loss-of-function mutations in the X-linked MAOA gene have been associated with Brunner syndrome, which is characterized by various forms of impulsivity, maladaptive externalizing behavior, and mild intellectual disability. Impaired MAOA activity in individuals with Brunner syndrome results in bioamine aberration, but it is currently unknown how this affects neuronal function, specifically in dopaminergic (DA) neurons. Here we generated human induced pluripotent stem cell (hiPSC)-derived DA neurons from three individuals with Brunner syndrome carrying different mutations and characterized neuronal properties at the single cell and neuronal network level in vitro. DA neurons of Brunner syndrome patients showed reduced synaptic density but exhibited hyperactive network activity. Intrinsic functional properties and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission were not affected in DA neurons of individuals with Brunner syndrome. Instead, we show that the neuronal network hyperactivity is mediated by upregulation of the GRIN2A and GRIN2B subunits of the N-methyl-d-aspartate receptor (NMDAR), resulting in increased NMDAR-mediated currents. By correcting a MAOA missense mutation with CRISPR/Cas9 genome editing we normalized GRIN2A and GRIN2B expression, NMDAR function and neuronal population activity to control levels. Our data suggest that MAOA mutations in Brunner syndrome increase the activity of dopaminergic neurons through upregulation of NMDAR function, which may contribute to the etiology of Brunner syndrome associated phenotypes.


Assuntos
Transtornos Disruptivos, de Controle do Impulso e da Conduta/genética , Neurônios Dopaminérgicos/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual/genética , Monoaminoxidase/deficiência , Monoaminoxidase/genética , Mutação , Polimorfismo de Nucleotídeo Único , Receptores de N-Metil-D-Aspartato/metabolismo , Agressão , Transtornos Disruptivos, de Controle do Impulso e da Conduta/metabolismo , Transtornos Disruptivos, de Controle do Impulso e da Conduta/fisiopatologia , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Humanos , Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual/metabolismo , Deficiência Intelectual/fisiopatologia , Masculino , Monoaminoxidase/metabolismo , Rede Nervosa/metabolismo , Rede Nervosa/fisiopatologia , Sinapses/metabolismo , Transmissão Sináptica/genética
16.
Hum Brain Mapp ; 43(1): 292-299, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33300665

RESUMO

Here we review the motivation for creating the enhancing neuroimaging genetics through meta-analysis (ENIGMA) Consortium and the genetic analyses undertaken by the consortium so far. We discuss the methodological challenges, findings, and future directions of the genetics working group. A major goal of the working group is tackling the reproducibility crisis affecting "candidate gene" and genome-wide association analyses in neuroimaging. To address this, we developed harmonized analytic methods, and support their use in coordinated analyses across sites worldwide, which also makes it possible to understand heterogeneity in results across sites. These efforts have resulted in the identification of hundreds of common genomic loci robustly associated with brain structure. We have found both pleiotropic and specific genetic effects associated with brain structures, as well as genetic correlations with psychiatric and neurological diseases.


Assuntos
Encéfalo , Genética , Estudo de Associação Genômica Ampla , Transtornos Mentais , Metanálise como Assunto , Doenças do Sistema Nervoso , Neuroimagem , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Humanos , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/genética , Transtornos Mentais/patologia , Estudos Multicêntricos como Assunto , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia
17.
Hum Brain Mapp ; 43(1): 167-181, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32420672

RESUMO

Left-right asymmetry of the human brain is one of its cardinal features, and also a complex, multivariate trait. Decades of research have suggested that brain asymmetry may be altered in psychiatric disorders. However, findings have been inconsistent and often based on small sample sizes. There are also open questions surrounding which structures are asymmetrical on average in the healthy population, and how variability in brain asymmetry relates to basic biological variables such as age and sex. Over the last 4 years, the ENIGMA-Laterality Working Group has published six studies of gray matter morphological asymmetry based on total sample sizes from roughly 3,500 to 17,000 individuals, which were between one and two orders of magnitude larger than those published in previous decades. A population-level mapping of average asymmetry was achieved, including an intriguing fronto-occipital gradient of cortical thickness asymmetry in healthy brains. ENIGMA's multi-dataset approach also supported an empirical illustration of reproducibility of hemispheric differences across datasets. Effect sizes were estimated for gray matter asymmetry based on large, international, samples in relation to age, sex, handedness, and brain volume, as well as for three psychiatric disorders: autism spectrum disorder was associated with subtly reduced asymmetry of cortical thickness at regions spread widely over the cortex; pediatric obsessive-compulsive disorder was associated with altered subcortical asymmetry; major depressive disorder was not significantly associated with changes of asymmetry. Ongoing studies are examining brain asymmetry in other disorders. Moreover, a groundwork has been laid for possibly identifying shared genetic contributions to brain asymmetry and disorders.


Assuntos
Transtorno do Espectro Autista/patologia , Córtex Cerebral/anatomia & histologia , Transtorno Depressivo Maior/patologia , Substância Cinzenta/anatomia & histologia , Imageamento por Ressonância Magnética , Neuroimagem , Transtorno Obsessivo-Compulsivo/patologia , Transtorno do Espectro Autista/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Humanos , Estudos Multicêntricos como Assunto , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem
18.
Hum Brain Mapp ; 43(1): 470-499, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33044802

RESUMO

For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.


Assuntos
Variação Biológica da População/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Desenvolvimento Humano/fisiologia , Imageamento por Ressonância Magnética , Neuroimagem , Caracteres Sexuais , Espessura Cortical do Cérebro , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Masculino
19.
Psychol Med ; 52(14): 3150-3158, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33531098

RESUMO

BACKGROUND: A recent genome-wide association study (GWAS) identified 12 independent loci significantly associated with attention-deficit/hyperactivity disorder (ADHD). Polygenic risk scores (PRS), derived from the GWAS, can be used to assess genetic overlap between ADHD and other traits. Using ADHD samples from several international sites, we derived PRS for ADHD from the recent GWAS to test whether genetic variants that contribute to ADHD also influence two cognitive functions that show strong association with ADHD: attention regulation and response inhibition, captured by reaction time variability (RTV) and commission errors (CE). METHODS: The discovery GWAS included 19 099 ADHD cases and 34 194 control participants. The combined target sample included 845 people with ADHD (age: 8-40 years). RTV and CE were available from reaction time and response inhibition tasks. ADHD PRS were calculated from the GWAS using a leave-one-study-out approach. Regression analyses were run to investigate whether ADHD PRS were associated with CE and RTV. Results across sites were combined via random effect meta-analyses. RESULTS: When combining the studies in meta-analyses, results were significant for RTV (R2 = 0.011, ß = 0.088, p = 0.02) but not for CE (R2 = 0.011, ß = 0.013, p = 0.732). No significant association was found between ADHD PRS and RTV or CE in any sample individually (p > 0.10). CONCLUSIONS: We detected a significant association between PRS for ADHD and RTV (but not CE) in individuals with ADHD, suggesting that common genetic risk variants for ADHD influence attention regulation.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Disfunção Cognitiva , Adolescente , Adulto , Criança , Humanos , Adulto Jovem , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Disfunção Cognitiva/genética , Estudo de Associação Genômica Ampla , Fenótipo , Tempo de Reação/fisiologia , Estudos de Casos e Controles
20.
Psychol Med ; 52(3): 476-484, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32624021

RESUMO

BACKGROUND: Brain imaging studies have shown altered amygdala activity during emotion processing in children and adolescents with oppositional defiant disorder (ODD) and conduct disorder (CD) compared to typically developing children and adolescents (TD). Here we aimed to assess whether aggression-related subtypes (reactive and proactive aggression) and callous-unemotional (CU) traits predicted variation in amygdala activity and skin conductance (SC) response during emotion processing. METHODS: We included 177 participants (n = 108 cases with disruptive behaviour and/or ODD/CD and n = 69 TD), aged 8-18 years, across nine sites in Europe, as part of the EU Aggressotype and MATRICS projects. All participants performed an emotional face-matching functional magnetic resonance imaging task. RESULTS: Differences between cases and TD in affective processing, as well as specificity of activation patterns for aggression subtypes and CU traits, were assessed. Simultaneous SC recordings were acquired in a subsample (n = 63). Cases compared to TDs showed higher amygdala activity in response to negative faces (fearful and angry) v. shapes. Subtyping cases according to aggression-related subtypes did not significantly influence on amygdala activity; while stratification based on CU traits was more sensitive and revealed decreased amygdala activity in the high CU group. SC responses were significantly lower in cases and negatively correlated with CU traits, reactive and proactive aggression. CONCLUSIONS: Our results showed differences in amygdala activity and SC responses to emotional faces between cases with ODD/CD and TD, while CU traits moderate both central (amygdala) and peripheral (SC) responses. Our insights regarding subtypes and trait-specific aggression could be used for improved diagnostics and personalized treatment.


Assuntos
Transtorno da Conduta , Comportamento Problema , Adolescente , Agressão/psicologia , Tonsila do Cerebelo/diagnóstico por imagem , Transtornos de Deficit da Atenção e do Comportamento Disruptivo , Criança , Emoções/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA