Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(21): e2220856120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186867

RESUMO

Synaptic transmission requires the coordinated activity of multiple synaptic proteins that are localized at the active zone (AZ). We previously identified a Caenorhabditis elegans protein named Clarinet (CLA-1) based on homology to the AZ proteins Piccolo, Rab3-interactingmolecule (RIM)/UNC-10 and Fife. At the neuromuscular junction (NMJ), cla-1 null mutants exhibit release defects that are greatly exacerbated in cla-1;unc-10 double mutants. To gain insights into the coordinated roles of CLA-1 and UNC-10, we examined the relative contributions of each to the function and organization of the AZ. Using a combination of electrophysiology, electron microscopy, and quantitative fluorescence imaging we explored the functional relationship of CLA-1 to other key AZ proteins including: RIM1, Cav2.1 channels, RIM1-binding protein, and Munc13 (C. elegans UNC-10, UNC-2, RIMB-1 and UNC-13, respectively). Our analyses show that CLA-1 acts in concert with UNC-10 to regulate UNC-2 calcium channel levels at the synapse via recruitment of RIMB-1. In addition, CLA-1 exerts a RIMB-1-independent role in the localization of the priming factor UNC-13. Thus C. elegans CLA-1/UNC-10 exhibit combinatorial effects that have overlapping design principles with other model organisms: RIM/RBP and RIM/ELKS in mouse and Fife/RIM and BRP/RBP in Drosophila. These data support a semiconserved arrangement of AZ scaffolding proteins that are necessary for the localization and activation of the fusion machinery within nanodomains for precise coupling to Ca2+ channels.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(14): 6858-6867, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30894482

RESUMO

The formation of multivesicular endosomes (MVEs) mediates the turnover of numerous integral membrane proteins and has been implicated in the down-regulation of growth factor signaling, thereby exhibiting properties of a tumor suppressor. The endosomal sorting complex required for transport (ESCRT) machinery plays a key role in MVE biogenesis, enabling cargo selection and intralumenal vesicle (ILV) budding. However, the spatiotemporal pattern of endogenous ESCRT complex assembly and disassembly in mammalian cells remains poorly defined. By combining CRISPR/Cas9-mediated genome editing and live cell imaging using lattice light sheet microscopy (LLSM), we determined the native dynamics of both early- and late-acting ESCRT components at MVEs under multiple growth conditions. Specifically, our data indicate that ESCRT-0 accumulates quickly on endosomes, typically in less than 30 seconds, and its levels oscillate in a manner dependent on the downstream recruitment of ESCRT-I. Similarly, levels of the ESCRT-I complex also fluctuate on endosomes, but its average residency time is more than fivefold shorter compared with ESCRT-0. Vps4 accumulation is the most transient, however, suggesting that the completion of ILV formation occurs rapidly. Upon addition of epidermal growth factor (EGF), both ESCRT-I and Vps4 are retained at endosomes for dramatically extended periods of time, while ESCRT-0 dynamics are only modestly affected. Our findings are consistent with a model in which growth factor stimulation stabilizes late-acting components of the ESCRT machinery at endosomes to accelerate the rate of ILV biogenesis and attenuate signal transduction initiated by receptor activation.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Corpos Multivesiculares/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Transformada , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Edição de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Corpos Multivesiculares/genética , Transporte Proteico/fisiologia
3.
Biochemistry ; 52(51): 9275-85, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24328089

RESUMO

The cis-syn thymine cyclobutane dimer is a DNA photoproduct implicated in skin cancer. We compared the stability of individual base pairs in thymine dimer-containing duplexes to undamaged parent 10-mer duplexes. UV melting thermodynamic measurements, CD spectroscopy, and 2D NOESY NMR spectroscopy confirm that the thymine dimer lesion is locally and moderately destabilizing within an overall B-form duplex conformation. We measured the rates of exchange of individual imino protons by NMR using magnetization transfer from water and determined the equilibrium constant for the opening of each base pair K(op). In the normal duplex K(op) decreases from the frayed ends of the duplex toward the center, such that the central TA pair is the most stable with a K(op) of 8 × 10⁻7. In contrast, base pair opening at the 5'T of the thymine dimer is facile. The 5'T of the dimer has the largest equilibrium constant (K(op) = 3 × 10⁻4) in its duplex, considerably larger than even the frayed penultimate base pairs. Notably, base pairing by the 3'T of the dimer is much more stable than by the 5'T, indicating that the predominant opening mechanism for the thymine dimer lesion is not likely to be flipping out into solution as a single unit. The dimer asymmetrically affects the stability of the duplex in its vicinity, destabilizing base pairing on its 5' side more than on the 3' side. The striking differences in base pair opening between parent and dimer duplexes occur independently of the duplex-single strand melting transitions.


Assuntos
Dano ao DNA , DNA de Forma B/química , Modelos Moleculares , Oligodesoxirribonucleotídeos/química , Dímeros de Pirimidina/química , Pareamento de Bases , Fenômenos Bioquímicos , Dicroísmo Circular , DNA de Forma B/metabolismo , Medição da Troca de Deutério , Cinética , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Oligodesoxirribonucleotídeos/metabolismo , Prótons , Dímeros de Pirimidina/metabolismo , Estereoisomerismo
4.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014115

RESUMO

Textbook models of synaptogenesis position cell adhesion molecules such as neurexin as initiators of synapse assembly. Here we discover a mechanism for presynaptic assembly that occurs prior to neurexin recruitment, while supporting a role for neurexin in synapse maintenance. We find that the cytosolic active zone scaffold SYD-1 interacts with membrane phospholipids to promote active zone protein clustering at the plasma membrane, and subsequently recruits neurexin to stabilize those clusters. Employing molecular dynamics simulations to model intrinsic interactions between SYD-1 and lipid bilayers followed by in vivo tests of these predictions, we find that PIP2-interacting residues in SYD-1's C2 and PDZ domains are redundantly necessary for proper active zone assembly. Finally, we propose that the uncharacterized yet evolutionarily conserved short γ isoform of neurexin represents a minimal neurexin sequence that can stabilize previously assembled presynaptic clusters, potentially a core function of this critical protein.

5.
Cell Rep ; 38(3): 110263, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35045304

RESUMO

The late-acting endosomal sorting complex required for transport (ESCRT) machinery has been implicated in facilitating the resealing of the nuclear envelope (NE) after mitosis, enabling compartmentalization of the genome away from the cytoplasm. Here, we leverage the stereotypic first division of the C. elegans embryo to identify additional functions of the ESCRT machinery in maintaining the structure of the inner nuclear membrane. Specifically, impaired ESCRT function results in a defect in the pruning of inner nuclear membrane invaginations, which arise normally during NE reformation and expansion. Additionally, in combination with a hypomorphic mutation that interferes with assembly of the underlying nuclear lamina, inhibition of ESCRT function significantly perturbs NE architecture and increases chromosome segregation defects, resulting in penetrant embryonic lethality. Our findings highlight links between ESCRT-mediated inner nuclear membrane remodeling, maintenance of nuclear envelope morphology, and the preservation of the genome during early development.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Mitose/fisiologia , Membrana Nuclear/metabolismo , Animais , Caenorhabditis elegans
6.
Neuron ; 107(4): 593-594, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32818471

RESUMO

How synapses assemble remains unknown. In this issue of Neuron, Held et al. (2020) demonstrate that Cav2-type voltage-gated calcium channels do not mediate presynaptic assembly. Moreover, the channel-associated protein α2δ localizes independently, suggesting additional functions for this auxiliary protein.


Assuntos
Canais de Cálcio Tipo N , Cálcio , Cálcio/metabolismo , Canais de Cálcio Tipo N/genética , Neurônios/metabolismo , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA