RESUMO
Botanical varieties of hemp differ in chemical composition, plant morphology, agronomy, and industrial suitability. Hemp is popular for cultivation for the production of cannabinoid oil, fiber production, biomass, etc. The fertilization process is one of the most important factors affecting the plant, both its condition and chemical composition. So far, research has been carried out proving that hemp is a valuable source of, among others: fatty acids, amino acids, acids, vitamins, numerous micro- and macroelements, and antioxidant compounds. In this experiment, it was decided to check the possibility of harvesting hemp panicles twice in one year. The purpose of this treatment is to use one plant to produce cannabidiol oil and grain. The main aim of the research was to determine bioactive compounds in hemp seeds and to determine whether the cultivation method affects their content and quantity. Based on the research conducted, it was observed that hemp can be grown in two directions at the same time and harvested twice because its health-promoting properties do not lose their value. It was found that regardless of whether hemp is grown solely for seeds or to obtain essential oils and then seeds, the type of fertilization does not affect the content of phenolic acids (e.g., syringic acid: 69.69-75.14 µg/100 g, vanillic acid: 1.47-1.63 µg/100 g). Based on the conducted research, it was found that essential oils can be obtained from one plant in the summer and seeds from Henola hemp cultivation in the autumn, because such a treatment does not affect the content of the discussed compounds.
Assuntos
Cannabis , Ácidos Graxos , Polifenóis , Sementes , Sementes/química , Cannabis/química , Cannabis/crescimento & desenvolvimento , Ácidos Graxos/análise , Polifenóis/análise , Polifenóis/química , Terpenos/análise , Terpenos/química , Fertilizantes/análise , Óleos Voláteis/química , Óleos Voláteis/análise , FertilizaçãoRESUMO
The popularity of hemp cultivation for industrial purposes has been steadily growing for many years. With the addition of products derived from these plants to the Novel Food Catalogue, maintained by the European Commission, a significant increase in interest in hemp food is also expected. The aim of the study was to determine the characteristics of hempseed, oil, and oil cake samples produced from experimental plots grown in different conditions. The research was conducted on the Henola variety, one of the newest and most popular varieties of hemp, recently bred for grain and oil. The content of bioactive compounds in grain and oil has been subjected to detailed chemical analyses in order to determine the effect of fertilization, the method of plant cultivation, and processing conditions on their quantity. The test results and the statistical analysis carried out showed a significant impact of the tested factors on the content of some of the tested bioactive compounds. The obtained results will help in the development of an effective method of cultivation for this hemp variety in order to maximize the content of the desired bioactive compounds per unit of cultivation area.
Assuntos
Cannabis , Cannabis/química , Sementes/química , Melhoramento Vegetal , Minerais/análise , FertilizaçãoRESUMO
BACKGROUND: The present study aimed to demonstrate the superiority of bioethanol yield and its quality from sorghum using the granular starch degrading enzyme Stargen™ 002 over simultaneous saccharification and fermentation, and separate hydrolysis and fermentation using Zymomonas mobilis CCM 3881 and Ethanol Red® yeast. RESULTS: Bacteria were found to produce ethanol at higher yield than the yeast in all fermentations. The highest ethanol yield was obtained with Z. mobilis during 48 h of simultaneous saccharification and fermentation (83.85% theoretical yield) and fermentation with Stargen™ 002 (81.27% theoretical yield). Pre-liquefaction in fermentation with Stargen™ 002 did not improve ethanol yields for both Z. mobilis and Saccharomyces cerevisiae. Chromatographic analysis showed twice less total volatile compounds in distillates obtained after bacterial (3.29-5.54 g L-1 ) than after yeast (7.84-9.75 g L-1 ) fermentations. Distillates obtained after bacterial fermentation were characterized by high level of aldehydes (up to 65% of total volatiles) and distillates obtained after yeast fermentation of higher alcohols (up to 95% of total volatiles). The process of fermentation using granular starch hydrolyzing enzyme cocktail Stargen™ 002 resulted in low amounts of all volatile compounds in distillates obtained after bacterial fermentation, but the highest amounts in distillates obtained after yeast fermentation. CONCLUSION: The present study emphasizes the great potential of bioethanol production from sorghum with Z. mobilis using granular starch hydrolyzing enzyme Stargen™ 002, which leads to reduced water and energy consumption, especially when energy sources are strongly related to global climate change. © 2023 Society of Chemical Industry.
Assuntos
Sorghum , Zymomonas , Saccharomyces cerevisiae , Etanol , Fermentação , AmidoRESUMO
Despite the significant progress in wound healing, chronic skin wounds remain a challenge for today's medicine. Due to the growing popularity of natural materials, silk protein-based dressings are gaining more attention in this field. Most studies refer to silk fibroin because sericin has been considered a waste product for years. However, sericin is also worth noting. Sericin-based dressings are mainly studied in cell cultures or animals. Sericin is the dressings' main component or can be included in more complex, advanced biomaterials. Recent studies highlight sericin's important role, noting its biocompatibility, biodegradability, and beneficial effects in skin wound healing, such as antibacterial activity, antioxidant and anti-inflammatory effects, or angiogenic properties. Developing sericin-based biomaterials is often simple, free of toxic by-products, and inexpensive, requiring no highly sophisticated apparatus. As a result, sericin-based dressings can be widely used in wound healing and have low environmental impact. However, the literature in this area is further limited. The following review collects and describes recent studies showing silk sericin's influence on skin wound healing.
Assuntos
Sericinas , Pele , Cicatrização , Sericinas/química , Sericinas/farmacologia , Cicatrização/efeitos dos fármacos , Humanos , Animais , Pele/efeitos dos fármacos , Pele/lesões , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Bandagens , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes/farmacologia , Antioxidantes/químicaRESUMO
More than 35% of the world sorghum seed production is a human food source. The main ingredient of fully ripe sorghum grains is starch. Sorghum does not contain gluten, and it is also a rich source of antioxidant compounds other than vitamins or macro- and microelements, including phenolic acids, flavonoids, and sterols. The aim of this study was to determine the antioxidant activity and the content of selected bioactive compounds, i.e., total phenolic acids, total flavonoids, and total phytosterols, as well as determination of the qualitative and quantitative profile of phenolic acids, flavonoids, and phytosterols in various food products, the basic ingredient of which was sorghum grain. It was found that antioxidant activity is related to the total phenolic compounds content. The ABTSâ¢+ ranged from 319 to 885 µmol TROLOX/kg. However, white sorghum grain flour contained almost two times more polyphenols than red sorghum grain flour. The FPA ranged from 224 in raw pasta to 689 mgGAE/100 g in white sorghum grain. During this study, the quantitative profile of selected polyphenols in grain flour, wafers, pasta, and cookies containing sorghum grain was also investigated, as well as the content of 11 selected phenolic acids. Total content of the latter ranged from 445 to 2850 mg/kg. Phytosterols such as beta-sitosterol, campesterol, and stigmasterol were found in all the analyzed products. Based on this research, it was investigated that the products containing sorghum grains can be classified as functional food.
RESUMO
In view of the increasing demand of organic agriculture, utilization of waste and environmental protection, sericulture focuses not only on the cocoon production, but also on other ways that can benefit the farm's economy. It is necessary to find new sources of income for small-scale farmers not only through cocoon selling, but also by the multiple uses of by-products. Insect farming technology provides a cheap source of biomass, which may be a good material in biogas production. Studies showed that the examined substrates, both silkworm breeding waste and caterpillar excreta, generate a biogas yield comparable to other substrates of agricultural origin, such as cattle, pig and chicken manures. Fermentation of silkworm excreta under mesophilic conditions produces 167.32â¯m3/Mg TS of methane and 331.97â¯m3/Mg TS of biogas, while fermentation of silkworm breeding waste yields 256.59â¯m3/Mg TS of methane and 489.24â¯m3/Mg TS of biogas. Moreover, the chemical composition of these raw materials was analyzed.
Assuntos
Biocombustíveis , Bombyx , Animais , Biomassa , Reatores Biológicos , Bovinos , Esterco , Metano , SuínosRESUMO
The aim of this work was to study the potential of sorghum crop cultivated in European climate as an energy material. The investigation showed strong interaction between the fermentation method and the sorghum cultivar. It was also noted that the cultivar with the highest grain yield showed the highest yield of ethanol per hectare, achieving 1269â¯L/ha in SHF (separate hydrolysis and fermentation) and 1248â¯L/ha in SSF (simultaneous saccharification and fermentation). Chromatographic analysis of raw spirits showed that smaller amounts of impurities are formed in the SSF process than in the SHF process. The calorific value of sorghum straw was also measured, and amounted to 16,050-16,840â¯kJ/kg. The results have demonstrated the high value of sorghum as grain for bioethanol production and as straw as a valuable feedstock for forming pellets or briquettes.