Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 326(4): F622-F634, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38420675

RESUMO

Calciprotein particles (CPPs) provide an efficient mineral buffering system to prevent the complexation of phosphate and calcium in the circulation. However, in chronic kidney disease (CKD), the phosphate load exceeds the mineral buffering capacity, resulting in the formation of crystalline CPP2 particles. CPP2 have been associated with cardiovascular events and mortality. Moreover, CPP2 have been demonstrated to induce calcification in vitro. In this study, we examined the fate of CPP2 in a rat model of CKD. Calcification was induced in Sprague-Dawley rats by 5/6 nephrectomy (5/6-Nx) combined with a high-phosphate diet. Control rats received sham surgery and high-phosphate diet. Twelve weeks after surgery, kidney failure was significantly induced in 5/6-Nx rats as determined by enhanced creatinine and urea plasma levels and abnormal kidney histological architecture. Subsequently, radioactive and fluorescent (FITC)-labeled CPP2 ([89Zr]Zr-CPP2-FITC) were injected intravenously to determine clearance in vivo. Using positron emission tomography scans and radioactive biodistribution measurements, it was demonstrated that [89Zr]Zr-CPP2-FITC are mainly present in the liver and spleen in both 5/6-Nx and sham rats. Immunohistochemistry showed that [89Zr]Zr-CPP2-FITC are predominantly taken up by Kupffer cells and macrophages. However, [89Zr]Zr-CPP2-FITC could also be detected in hepatocytes. In the different parts of the aorta and in the blood, low values of [89Zr]Zr-CPP2-FITC were detectable, independent of the presence of calcification. CPP2 are cleared rapidly from the circulation by the liver and spleen in a rat model of CKD. In the liver, Kupffer cells, macrophages, and hepatocytes contribute to CPP2 clearance.NEW & NOTEWORTHY Calciprotein particles (CPPs) buffer calcium and phosphate in the blood to prevent formation of crystals. In CKD, increased phosphate levels may exceed the buffering capacity of CPPs, resulting in crystalline CPPs that induce calcification. This study demonstrates that labeled CPPs are predominantly cleared from the circulation in the liver by Kupffer cells, macrophages, and hepatocytes. Our results suggest that targeting liver CPP clearance may reduce the burden of crystalline CPP in the development of vascular calcification.


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Ratos , Animais , Baço/metabolismo , Cálcio/metabolismo , Fluoresceína-5-Isotiocianato , Distribuição Tecidual , Ratos Sprague-Dawley , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/etiologia , Minerais , Fígado/metabolismo , Fosfatos , Insuficiência Renal Crônica/patologia
2.
Eur J Nucl Med Mol Imaging ; 49(7): 2425-2435, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35029739

RESUMO

INTRODUCTION: The first generation ligands for prostate-specific membrane antigen (PSMA)-targeted radio- and fluorescence-guided surgery followed by adjuvant photodynamic therapy (PDT) have already shown the potential of this approach. Here, we developed three new photosensitizer-based dual-labeled PSMA ligands by crucial modification of existing PSMA ligand backbone structures (PSMA-1007/PSMA-617) for multimodal imaging and targeted PDT of PCa. METHODS: Various new PSMA ligands were synthesized using solid-phase chemistry and provided with a DOTA chelator for 111In labeling and the fluorophore/photosensitizer IRDye700DX. The performance of three new dual-labeled ligands was compared with a previously published first-generation ligand (PSMA-N064) and a control ligand with an incomplete PSMA-binding motif. PSMA specificity, affinity, and PDT efficacy of these ligands were determined in LS174T-PSMA cells and control LS174T wildtype cells. Tumor targeting properties were evaluated in BALB/c nude mice with subcutaneous LS174T-PSMA and LS174T wildtype tumors using µSPECT/CT imaging, fluorescence imaging, and biodistribution studies after dissection. RESULTS: In order to synthesize the new dual-labeled ligands, we modified the PSMA peptide linker by substitution of a glutamic acid into a lysine residue, providing a handle for conjugation of multiple functional moieties. Ligand optimization showed that the new backbone structure leads to high-affinity PSMA ligands (all IC50 < 50 nM). Moreover, ligand-mediated PDT led to a PSMA-specific decrease in cell viability in vitro (P < 0.001). Linker modification significantly improved tumor targeting compared to the previously developed PSMA-N064 ligand (≥ 20 ± 3%ID/g vs 14 ± 2%ID/g, P < 0.01) and enabled specific visualization of PMSA-positive tumors using both radionuclide and fluorescence imaging in mice. CONCLUSION: The new high-affinity dual-labeled PSMA-targeting ligands with optimized backbone compositions showed increased tumor targeting and enabled multimodal image-guided PCa surgery combined with targeted photodynamic therapy.


Assuntos
Fotoquimioterapia , Neoplasias da Próstata , Animais , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Glutamato Carboxipeptidase II/metabolismo , Humanos , Ligantes , Masculino , Camundongos , Camundongos Nus , Imagem Multimodal , Fármacos Fotossensibilizantes/uso terapêutico , Medicina de Precisão , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/terapia , Distribuição Tecidual
3.
Eur J Nucl Med Mol Imaging ; 49(13): 4736-4747, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35930033

RESUMO

PURPOSE: Prostate-specific membrane antigen (PSMA)-targeted PET/CT has become increasingly important in the management of prostate cancer, especially in localization of biochemical recurrence (BCR). PSMA-targeted PET/CT imaging with long-lived radionuclides as 89Zr (T1/2 = 78.4 h) may improve diagnostics by allowing data acquisition on later time points. In this study, we present our first clinical experience including preliminary biodistribution and dosimetry data of [89Zr]Zr-PSMA-617 PET/CT in patients with BCR of prostate cancer. METHODS: Seven patients with BCR of prostate cancer who revealed no (n = 4) or undetermined (n = 3) findings on [68Ga]Ga-PSMA-11 PET/CT imaging were referred to [89Zr]Zr-PSMA-617 PET/CT. PET/CT imaging was performed 1 h, 24 h, 48 h, and 72 h post injection (p.i.) of 111 ± 11 MBq [89Zr]Zr-PSMA-617 (mean ± standard deviation). Normal organ distribution and dosimetry were determined. Lesions visually considered as suggestive of prostate cancer were quantitatively analyzed. RESULTS: Intense physiological uptake was observed in the salivary and lacrimal glands, liver, spleen, kidneys, intestine and urinary tract. The parotid gland received the highest absorbed dose (0.601 ± 0.185 mGy/MBq), followed by the kidneys (0.517 ± 0.125 mGy/MBq). The estimated overall effective dose for the administration of 111 MBq was 10.1 mSv (0.0913 ± 0.0118 mSv/MBq). In 6 patients, and in particular in 3 of 4 patients with negative [68Ga]Ga-PSMA-11 PET/CT, at least one prostate cancer lesion was detected in [89Zr]Zr-PSMA-617 PET/CT imaging at later time points. The majority of tumor lesions were first visible at 24 h p.i. with continuously increasing tumor-to-background ratio over time. All tumor lesions were detectable at 48 h and 72 h p.i. CONCLUSION: [89Zr]Zr-PSMA-617 PET/CT imaging is a promising new diagnostic tool with acceptable radiation exposure for patients with prostate cancer especially when [68Ga]Ga-PSMA-11 PET/CT imaging fails detecting recurrent disease. The long half-life of 89Zr enables late time point imaging (up to 72 h in our study) with increased tracer uptake in tumor lesions and higher tumor-to-background ratios allowing identification of lesions non-visible on [68Ga]Ga-PSMA-11 PET/CT imaging.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Masculino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radioisótopos de Gálio , Distribuição Tecidual , Projetos Piloto , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Radioisótopos
4.
Eur J Nucl Med Mol Imaging ; 49(6): 2064-2076, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34932154

RESUMO

RATIONALE: Prolonged in vivo evaluation of PSMA tracers could improve tumor imaging and patient selection for 177Lu-PSMA-617 and 177Lu-PSMA-I&T. In this study, we present the radiolabeling method of PSMA-617 and PSMA-I&T with the long-lived positron emitter 89Zr to enable PET imaging up to 7 days post-injection. We compared the biodistribution of 89Zr-PSMA-617 and 89Zr-PSMA-I&T to those of 177Lu-PSMA-617 and 177Lu-PSMA-I&T, respectively, in a PSMA+ xenograft model. Moreover, we provide the first human 89Zr-PSMA-617 images. MATERIALS AND METHODS: PSMA ligands were labeled with 50-55 MBq [89Zr]ZrCl4 using a two-step labeling protocol. For biodistribution, BALB/c nude mice bearing PSMA+ and PSMA- xenografts received 0.6 µg (0.6-1 MBq) of 89Zr-PSMA-617, 89Zr-PSMA-I&T, 177Lu-PSMA-617, or 177Lu-PSMA-I&T intravenously. Ex vivo biodistribution and PET/SPECT imaging were performed up to 168 h post-injection. Dosimetry was performed from the biodistribution data. The patient received 90.5 MBq 89Zr-PSMA-617 followed by PET/CT imaging. RESULTS: 89Zr-labeled PSMA ligands showed a comparable ex vivo biodistribution to its respective 177Lu-labeled counterparts with high tumor accumulation in the PSMA+ xenografts. However, using a dose estimation model for 177Lu, absorbed radiation dose in bone and kidneys differed among the 177Lu-PSMA and 89Zr-PSMA tracers. 89Zr-PSMA-617 PET in the first human patient showed high contrast of PSMA expressing tissues up to 48 h post-injection. CONCLUSION: PSMA-617 and PSMA-I&T were successfully labeled with 89Zr and demonstrated high uptake in PSMA+ xenografts, which enabled PET up to 168 h post-injection. The biodistribution of 89Zr-PSMA-I&T and 89Zr-PSMA-617 resembled that of 177Lu-PSMA-I&T and 177Lu-PSMA-617, respectively. The first patient 89Zr-PSMA-617 PET images were of high quality warranting further clinical investigation.


Assuntos
Lutécio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Linhagem Celular Tumoral , Dipeptídeos , Compostos Heterocíclicos com 1 Anel , Humanos , Ligantes , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Antígeno Prostático Específico , Radioisótopos , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
5.
Mol Pharm ; 19(10): 3511-3520, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35044182

RESUMO

Hypoxic areas are present in the majority of solid tumors, and hypoxia is associated with resistance to therapies and poor outcomes. A transmembrane protein that is upregulated by tumor cells that have adapted to hypoxic conditions is carbonic anhydrase IX (CAIX). Therefore, noninvasive imaging of CAIX could be of prognostic value, and it could steer treatment strategies. The aim of this study was to compare variants of CAIX-binding VHH B9, with and without a C-terminal albumin-binding domain with varying affinity (ABDlow and ABDhigh), for SPECT imaging of CAIX expression. The binding affinity and internalization of the various B9-variants were analyzed using SK-RC-52 cells. Biodistribution studies were performed in mice with subcutaneous SCCNij153 human head and neck cancer xenografts. Tracer uptake was determined by ex vivo radioactivity counting and visualized by SPECT/CT imaging. Furthermore, autoradiography images of tumor sections were spatially correlated with CAIX immunohistochemistry. B9-variants demonstrated a similar moderate affinity for CAIX in vitro. Maximal tumor uptake and acceptable tumor-to-blood ratios were found in the SCCNij153 model at 4 h post injection for [111In]In-DTPA-B9 (0.51 ± 0.08%ID/g and 8.1 ± 0.85, respectively), 24 h post injection for [111In]In-DTPA-B9-ABDlow (2.39 ± 0.44%ID/g and 3.66 ± 0.81, respectively) and at 72 h post injection for [111In]In-DTPA-B9-ABDhigh (8.7 ± 1.34%ID/g and 2.43 ± 0.15, respectively). An excess of unlabeled monoclonal anti-CAIX antibody efficiently inhibited tumor uptake of [111In]In-DTPA-B9, while only a partial reduction of [111In]In-DTPA-B9-ABDlow and [111In]In-DTPA-B9-ABDhigh uptake was found. Immunohistochemistry and autoradiography images showed colocalization of all B9-variants with CAIX expression; however, [111In]In-DTPA-B9-ABDlow and [111In]In-DTPA-B9-ABDhigh also accumulated in non-CAIX expressing regions. Tumor uptake of [111In]In-DTPA-B9-ABDlow and [111In]In-DTPA-B9-ABDhigh, but not of [111In]In-DTPA-B9, could be visualized with SPECT/CT imaging. In conclusion, [111In]In-DTPA-B9 has a high affinity to CAIX and shows specific targeting to CAIX in head and neck cancer xenografts. The addition of ABD prolonged plasma half-life, increased tumor uptake, and enabled SPECT/CT imaging. This uptake was, however, partly CAIX- independent, precluding the ABD-tracers for use in hypoxia quantification in this tumor type.


Assuntos
Anticorpos Monoclonais , Neoplasias de Cabeça e Pescoço , Albuminas/metabolismo , Animais , Anticorpos Monoclonais/química , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Linhagem Celular Tumoral , Meia-Vida , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Hipóxia , Camundongos , Ácido Pentético , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
6.
Brain Behav Immun ; 95: 321-329, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33839233

RESUMO

Despite increasing evidence that immune training within the brain may affect the clinical course of neuropsychiatric diseases, data on cerebral immune tolerance are scarce. This study in healthy volunteers examined the trajectory of the immune response systemically and within the brain following repeated lipopolysaccharide (LPS) challenges. Five young males underwent experimental human endotoxemia (intravenous administration of 2 ng/kg LPS) twice with a 7-day interval. The systemic immune response was assessed by measuring plasma cytokine levels. Four positron emission tomography (PET) examinations, using the translocator protein (TSPO) ligand 18F-DPA-714, were performed in each participant, to assess brain immune cell activation prior to and 5 hours after both LPS challenges. The first LPS challenge caused a profound systemic inflammatory response and resulted in a 53% [95%CI 36-71%] increase in global cerebral 18F-DPA-714 binding (p < 0.0001). Six days after the first challenge, 18F-DPA-714 binding had returned to baseline levels (p = 0.399). While the second LPS challenge resulted in a less pronounced systemic inflammatory response (i.e. 77 ± 14% decrease in IL-6 compared to the first challenge), cerebral inflammation was not attenuated, but decreased below baseline, illustrated by a diffuse reduction of cerebral 18F-DPA-714 binding (-38% [95%CI -47 to -28%], p < 0.0001). Our findings constitute evidence for in vivo immunological reprogramming in the brain following a second inflammatory insult in healthy volunteers, which could represent a neuroprotective mechanism. These results pave the way for further studies on immunotolerance in the brain in patients with systemic inflammation-induced cerebral dysfunction.


Assuntos
Encéfalo/imunologia , Inflamação/imunologia , Neuroimagem , Encéfalo/diagnóstico por imagem , Humanos , Imunidade , Masculino , Tomografia por Emissão de Pósitrons , Receptores de GABA/metabolismo
7.
NMR Biomed ; 33(10): e4362, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32662543

RESUMO

Reprogramming of energy metabolism in the development of prostate cancer can be exploited for a better diagnosis and treatment of the disease. The goal of this study was to determine whether differences in glucose and pyruvate metabolism of human prostate cancer cells with dissimilar aggressivenesses can be detected using hyperpolarized [1-13 C]pyruvate MRS and [18 F]FDG-PET imaging, and to evaluate whether these measures correlate. For this purpose, we compared murine xenografts of human prostate cancer LNCaP cells with those of more aggressive PC3 cells. [1-13 C]pyruvate was hyperpolarized by dissolution dynamic nuclear polarization (dDNP) and [1-13 C]pyruvate to lactate conversion was followed by 13 C MRS. Subsequently [18 F]FDG uptake was investigated by static and dynamic PET measurements. Standard uptake values (SUVs) for [18 F]FDG were significantly higher for xenografts of PC3 compared with those of LNCaP. However, we did not observe a difference in the average apparent rate constant kpl of 13 C label exchange from pyruvate to lactate between the tumor variants. A significant negative correlation was found between SUVs from [18 F]FDG PET measurements and kpl values for the xenografts of both tumor types. The kpl rate constant may be influenced by various factors, and studies with a range of prostate cancer cells in suspension suggest that LDH inhibition by pyruvate may be one of these. Our results indicate that glucose and pyruvate metabolism in the prostate cancer cell models differs from that in other tumor models and that [18 F]FDG-PET can serve as a valuable complementary tool in dDNP studies of aggressive prostate cancer with [1-13 C]pyruvate.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Fluordesoxiglucose F18/química , Glucose/metabolismo , Lactatos/metabolismo , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Ácido Pirúvico/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Metabolismo Energético , Humanos , Cinética , Masculino , Camundongos Endogâmicos BALB C , Distribuição Tecidual
8.
Mol Pharm ; 16(2): 701-708, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30550290

RESUMO

Tumor hypoxia plays a major role in radio- and chemotherapy resistance in solid tumors. Carbonic Anhydrase IX (CAIX) is an endogenous hypoxia-related protein, which is associated with poor patient outcome. The quantitative assessment of CAIX expression of tumors may steer cancer treatment by predicting therapy response or patient selection for antihypoxia or CAIX-targeted treatment. Recently, the single-photon emission computerized tomography (SPECT) tracer [111In]In-DTPA-girentuximab-F(ab')2 was developed and validated for targeting CAIX. The aim of this study was to optimize quantitative microSPECT/CT of CAIX expression in vivo in head and neck tumor models. Athymic mice with subcutaneous SCCNij153 and SCCNij202 head and neck squamous cell carcinoma xenografts were injected with [111In]In-DTPA-girentuximab-F(ab')2. First, the protein dose, timing, and image acquisition settings were optimized. Tracer uptake was determined by quantitative SPECT, ex vivo radioactivity counting, and by autoradiography of tumor sections. The same tumor sections were immunohistochemically stained for CAIX expression and hypoxia. Highest tumor-normal-tissue contrast was obtained at 24 h after injection of the tracer. A protein dose of 10 µg resulted in the highest tumor-to-muscle ratio at 24 h p.i. Ex vivo biodistribution studies showed a tumor uptake of 3.0 ± 0.6%ID/g and a tumor-to-muscle ratio of 8.7 ± 1.4 (SCCNij153). Quantitative analysis of the SPECT images enabled us to distinguish CAIX antigen blocked from nonblocked tumors, fractions positive for CAIX expression: 0.22 ± 0.02 versus 0.08 ± 0.01 ( p < 0.01). Immunohistochemical, autoradiographic, and microSPECT/CT analyses showed a distinct intratumoral spatial correlation between localization of the radiotracer and CAIX expression. Here, we demonstrate that [111In]In-DTPA-girentuximab-F(ab')2 specifically targets CAIX-expressing cells in head and neck cancer xenografts. SPECT imaging with indium-labeled girentuximab-F(ab')2 allows quantitative assessment of the fraction of CAIX positive tissue in head and neck cancer xenografts. These results indicate that [111In]In-DTPA-girentuximab-F(ab')2 is a promising tracer to image hypoxia-related CAIX expression.


Assuntos
Anidrase Carbônica IX/metabolismo , Hipóxia/diagnóstico por imagem , Hipóxia/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Animais , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/uso terapêutico , Autorradiografia , Imuno-Histoquímica , Camundongos , Camundongos Nus , Nitroimidazóis/farmacocinética , Nitroimidazóis/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Tomografia Computadorizada de Emissão de Fóton Único
9.
J Immunol ; 197(7): 2715-25, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27566820

RESUMO

Potent immunotherapies are urgently needed to boost antitumor immunity and control disease in cancer patients. As dendritic cells (DCs) are the most powerful APCs, they are an attractive means to reinvigorate T cell responses. An appealing strategy to use the effective Ag processing and presentation machinery, T cell stimulation and cross-talk capacity of natural DC subsets is in vivo tumor Ag delivery. In this context, endocytic C-type lectin receptors are attractive targeting molecules. In this study, we investigated whether CLEC12A efficiently delivers tumor Ags into human DC subsets, facilitating effective induction of CD4(+) and CD8(+) T cell responses. We confirmed that CLEC12A is selectively expressed by myeloid cells, including the myeloid DC subset (mDCs) and the plasmacytoid DC subset (pDCs). Moreover, we demonstrated that these DC subsets efficiently internalize CLEC12A, whereupon it quickly translocates to the early endosomes and subsequently routes to the lysosomes. Notably, CLEC12A Ab targeting did not negatively affect DC maturation or function. Furthermore, CLEC12A-mediated delivery of keyhole limpet hemocyanin resulted in enhanced proliferation and cytokine secretion by keyhole limpet hemocyanin-experienced CD4(+) T cells. Most importantly, CLEC12A-targeted delivery of HA-1 long peptide resulted in efficient Ag cross-presentation by mDCs and pDCs, leading to strong ex vivo activation of HA-1-specific CD8(+) T cells of patients after allogeneic stem cell transplantation. Collectively, these data indicate that CLEC12A is an effective new candidate with great potential for in vivo Ag delivery into mDCs and pDCs, thereby using the specialized functions and cross-talk capacity of these DC subsets to boost tumor-reactive T cell immunity in cancer patients.


Assuntos
Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Lectinas Tipo C/imunologia , Neoplasias/imunologia , Receptores Mitogênicos/imunologia , Células Cultivadas , Células Dendríticas/citologia , Humanos
10.
Mol Imaging ; 14: 348-55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26162516

RESUMO

For intraoperative imaging, antibodies labeled with both a radionuclide and a fluorophore may be used to tag the tumor lesion with a radiolabel and a fluorescent signal at high tumor to background ratios. However, labeling antibodies with fluorescent moieties may affect the in vivo behavior of the antibody depending on the dye to antibody substitution ratio. To investigate the optimal substitution ratio for use in dual-modality image-guided surgery, we conjugated three different antibodies, MN-14 (anti-CEACAM5), girentuximab (anti-CAIX), and cetuximab (anti-EGFR), with both diethylene triamine pentaacetic acid (DTPA, for labeling with 111In) and IRdye 800CW at dye to antibody ratios of 0, 1, 1.5, 2, and 3 and assessed in vivo behavior. Biodistribution studies showed that at high dye to antibody ratios, liver uptake of the dual-labeled antibodies increased, whereas tumor uptake decreased. Conversely, very low ratios may not be optimal either because in that case, only a few antibody molecules will be dual-labeled (i.e., contain both a DTPA and an IRDye 800CW moiety), which may complicate interpretation of dual-modality data. The present study shows that, provided that the chelator to antibody ratio is high enough, a dye to antibody ratio in the range of 1 to 1.5 is optimal for antibody-targeted dual-modality imaging applications. However, the optimal configuration is antibody dependent and should be determined for each dual-labeled antibody individually.


Assuntos
Anticorpos/metabolismo , Diagnóstico por Imagem/métodos , Cuidados Intraoperatórios/métodos , Neoplasias/metabolismo , Animais , Feminino , Corantes Fluorescentes/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Coloração e Rotulagem , Distribuição Tecidual
11.
Eur J Nucl Med Mol Imaging ; 42(9): 1430-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26012900

RESUMO

PURPOSE: Here, the expression of F4/80 on the cell surface of murine macrophages was exploited to develop a novel imaging tracer that could visualize macrophages in vivo. METHODS: The immunoreactive fraction and IC50 of anti-F4/80-A3-1, conjugated with diethylenetriaminepentaacetic acid (DTPA) and radiolabelled with (111)In, were determined in vitro using murine bone marrow-derived macrophages. In vivo biodistribution studies were performed with (111)In-anti-F4/80-A3-1 and isotype-matched control antibody (111)In-rat IgG2b at 24 and 72 h post-injection (p.i.) in SCID/Beige mice bearing orthotopic MDA-MB-231 xenografts. In some studies mice were also treated with liposomal clodronate. Macrophage content in tissues was determined immunohistochemically. Micro-single photon emission computed tomography (SPECT)/CT images were also acquired. RESULTS: In vitro binding assays showed that (111)In-anti-F4/80-A3-1 specifically binds F4/80 receptor-positive macrophages. The immunoreactivity of anti-F4/80-A3-1 was 75 % and IC50 was 0.58 nM. In vivo, injection of 10 or 100 µg (111)In-anti-F4/80-A3-1 resulted in splenic uptake of 78 %ID/g and 31 %ID/g, respectively, and tumour uptake of 1.38 %ID/g and 4.08 %ID/g, respectively (72 h p.i.). Liposomal clodronate treatment reduced splenic uptake of 10 µg (111)In-anti-F4/80-A3-1 from 248 %ID/g to 114 %ID/g and reduced (111)In-anti-F4/80-A3-1 uptake in the liver and femur (24 h p.i.). Tracer retention in the blood and tumour uptake increased (24 h p.i.). Tumour uptake of (111)In-anti-F4/80-A3-1 was visualized by microSPECT/CT. Macrophage density in the spleen and liver decreased in mice treated with liposomal clodronate. Uptake of (111)In-rat IgG2b was lower in the spleen, liver and femur when compared to (111)In-anti-F4/80-A3-1. CONCLUSION: Radiolabelled anti-F4/80-A3-1 antibodies specifically localize in tissues infiltrated by macrophages in mice and can be used to visualize tumours. The liver and spleen act as antigen sink organs for macrophage-specific tracers.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Diferenciação/imunologia , Radioisótopos de Índio , Macrófagos/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Anticorpos Monoclonais/farmacocinética , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Traçadores Radioativos , Ratos , Distribuição Tecidual
12.
Mol Pharm ; 12(6): 2142-50, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25941834

RESUMO

Within the last years (89)Zr has attracted considerable attention as long-lived radionuclide for positron emission tomography (PET) applications. So far desferrioxamine B (DFO) has been mainly used as bifunctional chelating system. Fusarinine C (FSC), having complexing properties comparable to DFO, was expected to be an alternative with potentially higher stability due to its cyclic structure. In this study, as proof of principle, various FSC-RGD conjugates targeting αvß3 integrins were synthesized using different conjugation strategies and labeled with (89)Zr. In vitro stability, biodistribution, and microPET/CT imaging were evaluated using [(89)Zr]FSC-RGD conjugates or [(89)Zr]triacetylfusarinine C (TAFC). Quantitative (89)Zr labeling was achieved within 90 min at room temperature. The distribution coefficients of the different radioligands indicate hydrophilic character. Compared to [(89)Zr]DFO, [(89)Zr]FSC derivatives showed excellent in vitro stability and resistance against transchelation in phosphate buffered saline (PBS), ethylenediaminetetraacetic acid solution (EDTA), and human serum for up to 7 days. Cell binding studies and biodistribution as well as microPET/CT imaging experiments showed efficient receptor-specific targeting of [(89)Zr]FSC-RGD conjugates. No bone uptake was observed analyzing PET images indicating high in vivo stability. These findings indicate that FSC is a highly promising chelator for the development of (89)Zr-based PET imaging agents.


Assuntos
Quelantes/química , Radioisótopos/química , Compostos Férricos/química , Humanos , Ácidos Hidroxâmicos/química , Oligopeptídeos/química , Tomografia por Emissão de Pósitrons , Zircônio/química
13.
Int J Cancer ; 135(12): 2770-82, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24771207

RESUMO

Mammalian target of rapamycin (mTOR) is a new promising oncological target. However, most clinical studies reported only modest antitumor activity during mTOR-targeted monotherapies, including studies in osteosarcomas, emphasizing a need for improvement. We hypothesized that the combination with rationally selected other therapeutic agents may improve response. In this study, we examined the efficacy of the mTOR inhibitor temsirolimus combined with cisplatin or bevacizumab on the growth of human osteosarcoma xenografts (OS-33 and OS-1) in vivo, incorporating functional imaging techniques and microscopic analyses to unravel mechanisms of response. In both OS-33 and OS-1 models, the activity of temsirolimus was significantly enhanced by the addition of cisplatin (TC) or bevacizumab (TB). Extensive immunohistochemical analysis demonstrated apparent effects on tumor architecture, vasculature, apoptosis and the mTOR-pathway with combined treatments. 3'-Deoxy-3'-(18) F-fluorothymidine ((18) F-FLT) positron emission tomography (PET) scans showed a remarkable decrease in (18) F-FLT signal in TC- and TB-treated OS-1 tumors, which was already noticeable after 1 week of treatment. No baseline uptake was observed in the OS-33 model. Both immunohistochemistry and (18) F-FLT-PET demonstrated that responses as determined by caliper measurements underestimated the actual tumor response. Although (18) F-FLT-PET could be used for accurate and early response monitoring for temsirolimus-based therapies in the OS-1 model, we could not evaluate OS-33 tumors with this molecular imaging technique. Further research on the value of the use of (18) F-FLT-PET in this setting in osteosarcomas is warranted. Overall, these findings urge the further exploration of TC and TB treatment for osteosarcoma (and other cancer) patients.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Cisplatino/administração & dosagem , Osteossarcoma/tratamento farmacológico , Sirolimo/análogos & derivados , Inibidores da Angiogênese/administração & dosagem , Animais , Bevacizumab , Linhagem Celular Tumoral , Didesoxinucleosídeos , Feminino , Fluordesoxiglucose F18 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Tomografia por Emissão de Pósitrons , Inibidores de Proteínas Quinases/administração & dosagem , Sirolimo/administração & dosagem , Serina-Treonina Quinases TOR/metabolismo , Tomografia Computadorizada por Raios X , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Theranostics ; 14(9): 3693-3707, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948062

RESUMO

Background: Immune checkpoint inhibitors (ICI) are routinely used in advanced clear cell renal cell carcinoma (ccRCC). However, a substantial group of patients does not respond to ICI therapy. Radiation is a promising approach to increase ICI response rates since it can generate anti-tumor immunity. Targeted radionuclide therapy (TRT) is a systemic radiation treatment, ideally suited for precision irradiation of metastasized cancer. Therefore, the aim of this study is to explore the potential of combined TRT, targeting carbonic anhydrase IX (CAIX) which is overexpressed in ccRCC, using [177Lu]Lu-DOTA-hG250, and ICI for the treatment of ccRCC. Methods: In this study, we evaluated the therapeutic and immunological action of [177Lu]Lu-DOTA-hG250 combined with aPD-1/a-CTLA-4 ICI. First, the biodistribution of [177Lu]Lu-DOTA-hG250 was investigated in BALB/cAnNRj mice bearing Renca-CAIX or CT26-CAIX tumors. Renca-CAIX and CT26-CAIX tumors are characterized by poor versus extensive T-cell infiltration and homogeneous versus heterogeneous PD-L1 expression, respectively. Tumor-absorbed radiation doses were estimated through dosimetry. Subsequently, [177Lu]Lu-DOTA-hG250 TRT efficacy with and without ICI was evaluated by monitoring tumor growth and survival. Therapy-induced changes in the tumor microenvironment were studied by collection of tumor tissue before and 5 or 8 days after treatment and analyzed by immunohistochemistry, flow cytometry, and RNA profiling. Results: Biodistribution studies showed high tumor uptake of [177Lu]Lu-DOTA-hG250 in both tumor models. Dose escalation therapy studies in Renca-CAIX tumor-bearing mice demonstrated dose-dependent anti-tumor efficacy of [177Lu]Lu-DOTA-hG250 and remarkable therapeutic synergy including complete remissions when a presumed subtherapeutic TRT dose (4 MBq, which had no significant efficacy as monotherapy) was combined with aPD-1+aCTLA-4. Similar results were obtained in the CT26-CAIX model for 4 MBq [177Lu]Lu-DOTA-hG250 + a-PD1. Ex vivo analyses of treated tumors revealed DNA damage, T-cell infiltration, and modulated immune signaling pathways in the TME after combination treatment. Conclusions: Subtherapeutic [177Lu]Lu-DOTA-hG250 combined with ICI showed superior therapeutic outcome and significantly altered the TME. Our results underline the importance of investigating this combination treatment for patients with advanced ccRCC in a clinical setting. Further investigations should focus on how the combination therapy should be optimally applied in the future.


Assuntos
Anidrase Carbônica IX , Carcinoma de Células Renais , Inibidores de Checkpoint Imunológico , Neoplasias Renais , Animais , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/terapia , Carcinoma de Células Renais/patologia , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Neoplasias Renais/terapia , Neoplasias Renais/radioterapia , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica IX/antagonistas & inibidores , Humanos , Linhagem Celular Tumoral , Radioisótopos/uso terapêutico , Radioisótopos/farmacologia , Radioisótopos/administração & dosagem , Lutécio/uso terapêutico , Feminino , Antígenos de Neoplasias/metabolismo , Distribuição Tecidual , Microambiente Tumoral/efeitos dos fármacos , Proteína Tumoral 1 Controlada por Tradução , Ensaios Antitumorais Modelo de Xenoenxerto , Terapia Combinada/métodos , Camundongos Endogâmicos BALB C , Anticorpos Monoclonais
15.
Eur J Nucl Med Mol Imaging ; 40(9): 1377-83, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23674207

RESUMO

PURPOSE: TF12 is a trivalent bispecific antibody that consists of two anti-TROP-2 Fab fragments and one anti-histamine-succinyl-glycine (HSG) Fab fragment. The TROP-2 antigen is found in many epithelial cancers, including prostate cancer (PC), and therefore this bispecific antibody could be suitable for pretargeting in this cancer. In this study, the characteristics and the potential for pretargeted radioimmunoimaging and radioimmunotherapy with TF12 and the radiolabeled di-HSG peptide IMP288 in mice with human PC were investigated. METHODS: The optimal TF12 protein dose, IMP288 peptide dose, and dose interval for PC targeting were assessed in nude mice with s.c. PC3 xenografts. Immuno-positron emission tomography (PET)/CT was performed using TF12/68Ga-IMP288 at optimized conditions. The potential of pretargeted radioimmunotherapy (PRIT) using the TF12 pretargeted ¹77Lu-IMP288 was determined. RESULTS: TF12 and ¹¹¹In-IMP288 showed high and fast accumulation in the tumor [20.4 ± 0.6%ID/g at 1 h post-injection (p.i.)] at optimized conditions, despite the internalizing properties of TF12. The potential for PRIT was shown by retention of 50% of the ¹¹¹In-IMP288 in the tumor at 48 h p.i. One cycle of treatment with TF12 and ¹77Lu-IMP288 showed significant improvement of survival compared to treatment with ¹77Lu-IMP288 alone (90 vs. 67 days, p<0.0001) with no renal or hematological toxicity. CONCLUSION: TROP-2-expressing PC can be pretargeted efficiently with TF12, with very rapid uptake of the radiolabeled hapten-peptide, IMP288, sensitive immuno-PET, and effective therapy.


Assuntos
Anticorpos Biespecíficos/farmacocinética , Compostos Heterocíclicos com 1 Anel/farmacocinética , Oligopeptídeos/farmacocinética , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Radioimunoterapia , Compostos Radiofarmacêuticos/farmacocinética , Animais , Anticorpos Biespecíficos/uso terapêutico , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias da Próstata/radioterapia , Ligação Proteica , Compostos Radiofarmacêuticos/uso terapêutico , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Pharmaceutics ; 15(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36986657

RESUMO

The therapeutic potential of minigastrin (MG) analogs for the treatment of cholecystokinin-2 receptor (CCK2R)-expressing cancers is limited by poor in vivo stability or unfavorable accumulation in non-target tissues. Increased stability against metabolic degradation was achieved by modifying the C-terminal receptor-specific region. This modification led to significantly improved tumor targeting properties. In this study, further N-terminal peptide modifications were investigated. Two novel MG analogs were designed starting from the amino acid sequence of DOTA-MGS5 (DOTA-DGlu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1Nal-NH2). Introduction of a penta-DGlu moiety and replacement of the four N-terminal amino acids by a non-charged hydrophilic linker was investigated. Retained receptor binding was confirmed using two CCK2R-expressing cell lines. The effect on metabolic degradation of the new 177Lu-labeled peptides was studied in human serum in vitro, as well as in BALB/c mice in vivo. The tumor targeting properties of the radiolabeled peptides were assessed using BALB/c nude mice bearing receptor-positive and receptor-negative tumor xenografts. Both novel MG analogs were found to have strong receptor binding, enhanced stability, and high tumor uptake. Replacement of the four N-terminal amino acids by a non-charged hydrophilic linker lowered the absorption in the dose-limiting organs, whereas introduction of the penta-DGlu moiety increased uptake in renal tissue.

17.
Cells ; 12(10)2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37408254

RESUMO

Fibroblast activation protein (FAP), expressed on cancer-associated fibroblasts, is a target for diagnosis and therapy in multiple tumour types. Strategies to systemically deplete FAP-expressing cells show efficacy; however, these induce toxicities, as FAP-expressing cells are found in normal tissues. FAP-targeted photodynamic therapy offers a solution, as it acts only locally and upon activation. Here, a FAP-binding minibody was conjugated to the chelator diethylenetriaminepentaacetic acid (DTPA) and the photosensitizer IRDye700DX (DTPA-700DX-MB). DTPA-700DX-MB showed efficient binding to FAP-overexpressing 3T3 murine fibroblasts (3T3-FAP) and induced the protein's dose-dependent cytotoxicity upon light exposure. Biodistribution of DTPA-700DX-MB in mice carrying either subcutaneous or orthotopic tumours of murine pancreatic ductal adenocarcinoma cells (PDAC299) showed maximal tumour uptake of 111In-labelled DTPA-700DX-MB at 24 h post injection. Co-injection with an excess DTPA-700DX-MB reduced uptake, and autoradiography correlated with FAP expression in the stromal tumour region. Finally, in vivo therapeutic efficacy was determined in two simultaneous subcutaneous PDAC299 tumours; only one was treated with 690 nm light. Upregulation of an apoptosis marker was only observed in the treated tumours. In conclusion, DTPA-700DX-MB binds to FAP-expressing cells and targets PDAC299 tumours in mice with good signal-to-background ratios. Furthermore, the induced apoptosis indicates the feasibility of targeted depletion of FAP-expressing cells with photodynamic therapy.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Fotoquimioterapia , Animais , Camundongos , Serina Endopeptidases/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Distribuição Tecidual , Proteínas de Membrana/metabolismo , Neoplasias Pancreáticas/patologia , Fibroblastos/metabolismo , Ácido Pentético/metabolismo
18.
Eur J Nucl Med Mol Imaging ; 39(7): 1175-83, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22526953

RESUMO

PURPOSE: Invasive pulmonary aspergillosis is mainly caused by Aspergillus fumigatus, and is one of the major causes of morbidity and mortality in immunocompromised patients. The mortality associated with invasive pulmonary aspergillosis remains high, mainly due to the difficulties and limitations in diagnosis. We have shown that siderophores can be labelled with (68)Ga and can be used for PET imaging of A. fumigatus infection in rats. Here we report on the further evaluation of the most promising (68)Ga-siderophore candidates, triacetylfusarinine (TAFC) and ferrioxamine E (FOXE). METHODS: Siderophores were labelled with (68)Ga using acetate buffer. Log P, protein binding and stability values were determined. Uptake by A. fumigatus was studied in vitro in cultures with high and low iron loads. In vivo biodistribution was determined in normal mice and an infection model was established using neutropenic rats inoculated with A. fumigatus. Static and dynamic µPET imaging was performed and correlated with CT images, and lung infection was evaluated ex vivo. RESULTS: (68)Ga-siderophores were labelled with high radiochemical purity and specific activity. (68)Ga-TAFC and (68)Ga-FOXE showed high uptake by A. fumigatus in iron-deficient cultures. In normal mice, (68)Ga-TAFC and (68)Ga-FOXE showed rapid renal excretion with high metabolic stability. In the rat infection model focal lung uptake was detected by µPET with both compounds and increased with severity of the infection, correlating with abnormal CT images. CONCLUSION: (68)Ga-TAFC and (68)Ga-FOXE displayed excellent in vitro stability and high uptake by A. fumigatus. Both compounds showed excellent pharmacokinetics, highly selective accumulation in infected lung tissue and good correlation with severity of disease in a rat infection model, which makes them promising agents for A. fumigatus infection imaging.


Assuntos
Aspergillus fumigatus/metabolismo , Radioisótopos de Gálio , Aspergilose Pulmonar/diagnóstico por imagem , Aspergilose Pulmonar/metabolismo , Sideróforos/farmacocinética , Animais , Modelos Animais de Doenças , Feminino , Compostos Férricos/farmacocinética , Ácidos Hidroxâmicos/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos Cíclicos/farmacocinética , Tomografia por Emissão de Pósitrons , Aspergilose Pulmonar/microbiologia , Aspergilose Pulmonar/patologia , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Endogâmicos Lew , Distribuição Tecidual
19.
Clin Nucl Med ; 47(5): 435-436, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35234197

RESUMO

ABSTRACT: For localization of biochemical recurrence of prostate cancer, 68Ga-PSMA-11 PET/CT imaging was performed in a 66-year-old man with no suspicious findings at 1 hour p.i. Additional 89Zr-PSMA-617 PET/CT revealed a small local recurrence in the prostate bed, facilitating consecutive local therapy. This interesting image points to the potential of PET/CT with 89Zr-labeled PSMA ligands, for example, 89Zr-PSMA-617, for identifying the source of biochemical recurrence despite otherwise negative imaging including conventional PSMA PET/CT.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Idoso , Dipeptídeos , Ácido Edético , Isótopos de Gálio , Radioisótopos de Gálio , Compostos Heterocíclicos com 1 Anel , Humanos , Masculino , Recidiva Local de Neoplasia/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Antígeno Prostático Específico , Neoplasias da Próstata/diagnóstico por imagem , Radioisótopos , Zircônio
20.
Pharmaceuticals (Basel) ; 15(5)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35631396

RESUMO

In this study, we compared the tumor-targeting properties, therapeutic efficacy, and tolerability of the humanized anti-CAIX antibody (hG250) labeled with either the α-emitter actinium-225 (225Ac) or the ß--emitter lutetium-177 (177Lu) in mice. BALB/c nude mice were grafted with human renal cell carcinoma SK-RC-52 cells and intravenously injected with 30 µg [225Ac] Ac-DOTA-hG250 (225Ac-hG250) or 30 µg [177Lu] Lu-DOTA-hG250 (177Lu-hG250), followed by ex vivo biodistribution studies. Therapeutic efficacy was evaluated in mice receiving 5, 15, and 25 kBq of 225Ac-hG250; 13 MBq of 177Lu-hG250; or no treatment. Tolerability was evaluated in non-tumor-bearing animals. High tumor uptake of both radioimmunoconjugates was observed and increased up to day 7 (212.8 ± 50.2 %IA/g vs. 101.0 ± 18.4 %IA/g for 225Ac-hG250 and 177Lu-hG250, respectively). Survival was significantly prolonged in mice treated with 15 kBq 225Ac-hG250, 25 kBq 225Ac-hG250, and 13 MBq 177Lu-hG250 compared to untreated control (p < 0.05). Non-tumor-bearing mice that received single-dose treatment with 15 or 25 kBq 225Ac-hG250 showed weight loss at the end of the experiment (day 126), and immunohistochemical analysis suggested radiation-induced nephrotoxicity. These results demonstrate the therapeutic potential of CAIX-targeted α-therapy in renal cell carcinoma. Future studies are required to find an optimal balance between therapeutic efficacy and toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA