Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(11): e2217734120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36888661

RESUMO

Degradable polymer matrices and porous scaffolds provide powerful mechanisms for passive, sustained release of drugs relevant to the treatment of a broad range of diseases and conditions. Growing interest is in active control of pharmacokinetics tailored to the needs of the patient via programmable engineering platforms that include power sources, delivery mechanisms, communication hardware, and associated electronics, most typically in forms that require surgical extraction after a period of use. Here we report a light-controlled, self-powered technology that bypasses key disadvantages of these systems, in an overall design that is bioresorbable. Programmability relies on the use of an external light source to illuminate an implanted, wavelength-sensitive phototransistor to trigger a short circuit in an electrochemical cell structure that includes a metal gate valve as its anode. Consequent electrochemical corrosion eliminates the gate, thereby opening an underlying reservoir to release a dose of drugs by passive diffusion into surrounding tissue. A wavelength-division multiplexing strategy allows release to be programmed from any one or any arbitrary combination of a collection of reservoirs built into an integrated device. Studies of various bioresorbable electrode materials define the key considerations and guide optimized choices in designs. In vivo demonstrations of programmed release of lidocaine adjacent the sciatic nerves in rat models illustrate the functionality in the context of pain management, an essential aspect of patient care that could benefit from the results presented here.


Assuntos
Implantes Absorvíveis , Sistemas de Liberação de Medicamentos , Ratos , Animais , Eletrônica , Polímeros
2.
Muscle Nerve ; 70(1): 12-27, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38477416

RESUMO

The spinal cord facilitates communication between the brain and the body, containing intrinsic systems that work with lower motor neurons (LMNs) to manage movement. Spinal cord injuries (SCIs) can lead to partial paralysis and dysfunctions in muscles below the injury. While traditionally this paralysis has been attributed to disruptions in the corticospinal tract, a growing body of work demonstrates LMN damage is a factor. Motor units, comprising the LMN and the muscle fibers with which they connect, are essential for voluntary movement. Our understanding of their changes post-SCI is still emerging, but the health of motor units is vital, especially when considering innovative SCI treatments like nerve transfer surgery. This review seeks to collate current literature on how SCI impact motor units and explore neuromuscular clinical implications and treatment avenues. SCI reduced motor unit number estimates, and surviving motor units had impaired signal transmission at the neuromuscular junction, force-generating capacity, and excitability, which have the potential to recover chronically, yet the underlaying mechanisms are unclear. Furthermore, electrodiagnostic evaluations can aid in assessing the health lower and upper motor neurons, identify suitable targets for nerve transfer surgeries, and detect patients with time sensitive injuries. Lastly, many electrodiagnostic abnormalities occur in both chronic and acute SCI, yet factors contributing to these abnormalities are unknown. Future studies are required to determine how motor units adapt following SCI and the clinical implications of these adaptations.


Assuntos
Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/complicações , Humanos , Neurônios Motores/fisiologia , Junção Neuromuscular/fisiopatologia , Animais , Músculo Esquelético/fisiopatologia
3.
Muscle Nerve ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39205612

RESUMO

INTRODUCTION/AIMS: Phrenic neuropathy (PhN) impairs diaphragm muscle function, causing a spectrum of breathing disability. PhN etiologies and their natural history are ill-defined. This knowledge gap hinders informed prognosis and management decisions. This study aims to help fill this knowledge gap on PhN etiologies, outcomes, and recovery patterns, especially in the context of nonsurgical clinical practice. METHODS: This was a retrospective study from two interdisciplinary clinics, physiatry and neurology based. Patients were included if PhN was identified, and other causes of hemi-diaphragm muscle dysfunction excluded. Patients were followed serially at the discretion of the neuromuscular-trained neurologist or physiatrist. Recovery was assessed using pulmonary function tests (PFTs), diaphragm muscle ultrasound (US) thickening ratio, and patient-reported outcomes in patients presenting within 2 years of PhN onset. RESULTS: We identified 151 patients with PhN. The most common etiologies were idiopathic (27%), associated with cardiothoracic procedure (24%), and intensive care unit (17%). Of these patients, 117 (77%) were evaluated within 2 years of PhN onset. Of patients included in outcome analyses, 64% saw improvement on serial US, 50% on serial PFTs and 79% reported symptomatic improvement at an average of 15, 16, and 17 months, respectively. DISCUSSION: A clear majority of PhN patients show improvement in diaphragm muscle function, but on average, improvements took 15-17 months depending on the assessment type. These insights are vital for developing tailored treatments and can guide physicians in prognosis and decision-making, especially if more invasive interventions are being considered.

4.
Muscle Nerve ; 69(4): 403-408, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38294062

RESUMO

INTRODUCTION/AIMS: There is a dearth of knowledge regarding the status of infralesional lower motor neurons (LMNs) in individuals with traumatic cervical spinal cord injury (SCI), yet there is a growing need to understand how the spinal lesion impacts LMNs caudal to the lesion epicenter, especially in the context of nerve transfer surgery to restore several key upper limb functions. Our objective was to determine the frequency of pathological spontaneous activity (PSA) at, and below, the level of spinal injury, to gain an understanding of LMN health below the spinal lesion. METHODS: Ninety-one limbs in 57 individuals (53 males, mean age = 44.4 ± 16.9 years, mean duration from injury = 3.4 ± 1.4 months, 32 with motor complete injuries), were analyzed. Analysis was stratified by injury level as (1) C4 and above, (2) C5, and (3) C6-7. Needle electromyography was performed on representative muscles innervated by the C5-6, C6-7, C7-8, and C8-T1 nerve roots. PSA was dichotomized as present or absent. Data were pooled for the most caudal infralesional segment (C8-T1). RESULTS: A high frequency of PSA was seen in all infralesional segments. The pooled frequency of PSA for all injury levels at C8-T1 was 68.7% of the limbs tested. There was also evidence of PSA at the rostral border of the neurological level of injury, with 58.3% of C5-6 muscles in those with C5-level injuries. DISCUSSION: These data support a high prevalence of infralesional LMN abnormalities following SCI, which has implications to nerve transfer candidacy, timing of the intervention, and donor nerve options.


Assuntos
Traumatismos da Medula Espinal , Traumatismos da Coluna Vertebral , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Traumatismos da Medula Espinal/cirurgia , Traumatismos da Medula Espinal/patologia , Neurônios Motores/fisiologia , Eletromiografia , Nervos Espinhais , Medula Espinal/patologia
5.
J Neurophysiol ; 130(4): 895-909, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37671425

RESUMO

Oxaliplatin (OX) chemotherapy can lead to long-term sensorimotor impairments in cancer survivors. The impairments are often thought to be caused by OX-induced progressive degeneration of sensory afferents known as length-dependent dying-back sensory neuropathy. However, recent preclinical work has identified functional defects in the encoding of muscle proprioceptors and in motoneuron firing. These functional defects in the proprioceptive sensorimotor circuitry could readily impair muscle stretch reflexes, a fundamental building block of motor coordination. Given that muscle proprioceptors are distributed throughout skeletal muscle, defects in stretch reflexes could be widespread, including in the proximal region where dying-back sensory neuropathy is less prominent. All previous investigations on chemotherapy-related reflex changes focused on distal joints, leading to results that could be influenced by dying-back sensory neuropathy rather than more specific changes to sensorimotor circuitry. Our study extends this earlier work by quantifying stretch reflexes in the shoulder muscles in 16 cancer survivors and 16 healthy controls. Conduction studies of the sensory nerves in hand were completed to detect distal sensory neuropathy. We found no significant differences in the short-latency stretch reflexes (amplitude and latency) of the shoulder muscles between cancer survivors and healthy controls, contrasting with the expected differences based on the preclinical work. Our results may be linked to differences between the human and preclinical testing paradigms including, among many possibilities, differences in the tested limb or species. Determining the source of these differences will be important for developing a complete picture of how OX chemotherapy contributes to long-term sensorimotor impairments.NEW & NOTEWORTHY Our results showed that cancer survivors after oxaliplatin (OX) treatment exhibited stretch reflexes that were comparable with age-matched healthy individuals in the proximal upper limb. The lack of OX effect might be linked to differences between the clinical and preclinical testing paradigms. These findings refine our expectations derived from the preclinical study and guide future assessments of OX effects that may have been insensitive to our measurement techniques.


Assuntos
Sobreviventes de Câncer , Neoplasias , Humanos , Oxaliplatina , Extremidade Superior , Músculo Esquelético
6.
J Neurophysiol ; 128(4): 847-853, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36043801

RESUMO

In this review, we highlight the important role of the clinical electrodiagnostic (EDX) evaluation after cervical spinal cord injury (SCI). Our discussion focuses on the need for timely, frequent, and accurate EDX evaluations in the context of nerve transfer surgery to restore critical upper limb functions, including elbow extension, hand opening, and hand closing. The EDX evaluation is crucial to define the extent of lower motor neuron lesions and determine candidacy for surgery. We also discuss the important role of the postoperative EDX evaluation in determining prognosis and supporting rehabilitation. We propose a practical framework for EDX evaluation in this clinical setting.


Assuntos
Transferência de Nervo , Traumatismos da Medula Espinal , Mãos , Humanos , Procedimentos Neurocirúrgicos , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/cirurgia , Extremidade Superior
7.
J Ultrasound Med ; 41(2): 285-299, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33772850

RESUMO

The diaphragm, the principle muscle of inspiration, is an under-recognized contributor to respiratory disease. Dysfunction of the diaphragm can occur secondary to lung disease, prolonged ventilation, phrenic nerve injury, neuromuscular disease, and central nervous system pathology. In light of the global pandemic of coronavirus disease 2019 (COVID-19), there has been growing interest in the utility of ultrasound for evaluation of respiratory symptoms including lung and diaphragm sonography. Diaphragm ultrasound can be utilized to diagnose diaphragm dysfunction, assess severity of dysfunction, and monitor disease progression. This article reviews diaphragm and phrenic nerve ultrasound and describes clinical applications in the context of COVID-19.


Assuntos
COVID-19 , Diafragma/diagnóstico por imagem , Humanos , Nervo Frênico/diagnóstico por imagem , SARS-CoV-2 , Ultrassonografia
8.
J Neuroeng Rehabil ; 19(1): 108, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209094

RESUMO

We diagnosed 66 peripheral nerve injuries in 34 patients who survived severe coronavirus disease 2019 (COVID-19). We combine this new data with published case series re-analyzed here (117 nerve injuries; 58 patients) to provide a comprehensive accounting of lesion sites. The most common are ulnar (25.1%), common fibular (15.8%), sciatic (13.1%), median (9.8%), brachial plexus (8.7%) and radial (8.2%) nerves at sites known to be vulnerable to mechanical loading. Protection of peripheral nerves should be prioritized in the care of COVID-19 patients. To this end, we report proof of concept data of the feasibility for a wearable, wireless pressure sensor to provide real time monitoring in the intensive care unit setting.


Assuntos
Plexo Braquial , COVID-19 , Traumatismos dos Nervos Periféricos , Dispositivos Eletrônicos Vestíveis , Plexo Braquial/lesões , COVID-19/diagnóstico , Estudos de Viabilidade , Humanos
9.
Adv Funct Mater ; 31(29)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-36189172

RESUMO

Injured peripheral nerves typically exhibit unsatisfactory and incomplete functional outcomes, and there are no clinically approved therapies for improving regeneration. Post-operative electrical stimulation (ES) increases axon regrowth, but practical challenges from the cost of extended operating room time to the risks and pitfalls associated with transcutaneous wire placement have prevented broad clinical adoption. This study presents a possible solution in the form of advanced bioresorbable materials for thin, flexible, wireless implant that provides precisely controlled ES of the injured nerve for a brief time in the immediate post-operative period. Afterward, rapid, complete and safe modes of bioresorption naturally and quickly eliminate all of the constituent materials in their entirety, without the need for surgical extraction. The unusually high rate of bioresorption follows from the use of a unique, bilayer enclosure that combines two distinct formulations of a biocompatible form of polyanhydride as an encapsulating structure, to accelerate the resorption of active components and confine fragments until complete resorption. Results from mouse models of tibial nerve transection with re-anastomosis indicate that this system offers levels of performance and efficacy that match those of conventional wired stimulators, but without the need to extend the operative period or to extract the device hardware.

10.
Radiology ; 298(3): E117-E130, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33258748

RESUMO

With surging numbers of patients with coronavirus disease 2019 (COVID-19) throughout the world, neuromuscular complications and rehabilitation concerns are becoming more apparent. Peripheral nerve injury can occur in patients with COVID-19 secondary to postinfectious inflammatory neuropathy, prone positioning-related stretch and/or compression injury, systemic neuropathy, or nerve entrapment from hematoma. Imaging of peripheral nerves in patients with COVID-19 may help to characterize nerve abnormality, to identify site and severity of nerve damage, and to potentially elucidate mechanisms of injury, thereby aiding the medical diagnosis and decision-making process. This review article aims to provide a first comprehensive summary of the current knowledge of COVID-19 and peripheral nerve imaging.


Assuntos
COVID-19/complicações , Diagnóstico por Imagem/métodos , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/diagnóstico por imagem , Diagnóstico Diferencial , Humanos , Posicionamento do Paciente/métodos , Nervos Periféricos/diagnóstico por imagem , SARS-CoV-2
11.
Skeletal Radiol ; 50(9): 1763-1773, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33598718

RESUMO

The global pandemic of coronavirus disease 2019 (COVID-19) has revealed a surprising number of extra-pulmonary manifestations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. While myalgia is a common clinical feature of COVID-19, other musculoskeletal manifestations of COVID-19 were infrequently described early during the pandemic. There have been emerging reports, however, of an array of neuromuscular and rheumatologic complications related to COVID-19 infection and disease course including myositis, neuropathy, arthropathy, and soft tissue abnormalities. Multimodality imaging supports diagnosis and evaluation of musculoskeletal disorders in COVID-19 patients. This article aims to provide a first comprehensive summary of musculoskeletal manifestations of COVID-19 with review of imaging.


Assuntos
COVID-19 , Doenças do Sistema Nervoso Periférico , Humanos , Pulmão , Pandemias , SARS-CoV-2
12.
Muscle Nerve ; 61(5): 616-622, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32086830

RESUMO

INTRODUCTION: Evaluation of nerve mechanical properties has the potential to improve assessment of nerve impairment. Shear wave velocity, as measured by using shear wave (SW) ultrasound elastography, is a promising indicator of nerve mechanical properties such as stiffness. However, elucidation of external factors that influence SW velocity, particularly nerve tension, is required for accurate interpretations. METHODS: Median and ulnar nerve SW velocities were measured at proximal and distal locations with limb positions that indirectly altered nerve tension. RESULTS: Shear wave velocity was greater at proximal and distal locations for limb positions that induced greater tension in the median (mean increase proximal 89.3%, distal 64%) and ulnar (mean increase proximal 91.1%, distal 37.4%) nerves. DISCUSSION: Due to the influence of nerve tension when SW ultrasound elastography is used, careful consideration must be given to limb positioning.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Nervo Mediano/diagnóstico por imagem , Postura , Nervo Ulnar/diagnóstico por imagem , Extremidade Superior , Adolescente , Adulto , Fenômenos Biomecânicos , Feminino , Voluntários Saudáveis , Humanos , Masculino , Nervo Mediano/anatomia & histologia , Nervo Mediano/fisiologia , Tamanho do Órgão , Nervo Ulnar/anatomia & histologia , Nervo Ulnar/fisiologia , Ultrassonografia/métodos , Adulto Jovem
13.
J Neurophysiol ; 122(3): 1174-1185, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31116639

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of upper and lower motor neurons, which manifests clinically as progressive weakness. Although several epidemiological studies have found an association between traumatic brain injury (TBI) and ALS, there is not a consensus on whether TBI is an ALS risk factor. It may be that it can cause ALS in a subset of susceptible patients, based on a history of repetitive mild TBI and genetic predisposition. This cannot be determined based on clinical observational studies alone. Better preclinical models are necessary to evaluate the effects of TBI on ALS onset and progression. To date, only a small number of preclinical studies have been performed, mainly in the superoxide dismutase 1 transgenic rodents, which, taken together, have mixed results and notable methodological limitations. The more recent incorporation of additional animal models such as Drosophila flies, as well as patient-induced pluripotent stem cell-derived neurons, should facilitate a better understanding of a potential functional interaction between TBI and ALS.


Assuntos
Esclerose Lateral Amiotrófica , Concussão Encefálica , Proteínas de Ligação a DNA , Células-Tronco Pluripotentes Induzidas , Superóxido Dismutase-1 , Esclerose Lateral Amiotrófica/etiologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Concussão Encefálica/complicações , Concussão Encefálica/metabolismo , Concussão Encefálica/fisiopatologia , Humanos
15.
J Neurosurg Spine ; : 1-7, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39094196

RESUMO

OBJECTIVE: Cervical spinal cord injury (SCI) and lower trunk brachial plexus injury (BPI) commonly result in hand paralysis. Although restoring hand function is complex and challenging to achieve, regaining volitional hand control drastically enhances functionality for these patients. The authors aimed to systematically review the outcomes of hand-opening function after supinator to posterior interosseous nerve (PIN) transfer. METHODS: A systematic literature review was performed according to the PRISMA guidelines. RESULTS: A total of 16 studies with 88 patients and 119 supinator to PIN transfers were included (87 transfers for SCI and 32 for BPI). In most studies, the time interval from injury to surgery was 6-12 months. Finger extension and thumb extension (Medical Research Council grade ≥ 3/5) recovered in 86.5% (103/119) and 78.1% (93/119) of cases, respectively, over a median follow-up of 19 months. The rates of recovery were similar for the SCI and BPI populations (finger extension, 87.3% in SCI and 84.3% in BPI; thumb extension, 75.8% in SCI and 84.3% in BPI). Type of injury (OR 1.05, 95% CI 0.17-6.4, p = 0.95), time from injury to surgery (OR 1.01, 95% CI 0.8-1.29, p = 0.88), and age (OR 0.97, 95% CI 0.90-1.06, p = 0.60) were not associated with odds of a successful outcome. Duration of follow-up was significantly associated with successful finger extension (OR 1.15, 95% CI 1.01-1.30, p = 0.026). No donor-associated supinator weakness was reported postoperatively given that patients had an intact bicep muscle preoperatively contributing to supination. CONCLUSIONS: Supinator to PIN transfer is a safe and effective procedure that can achieve successful restoration of digital extension in the SCI and BPI population at similar rates. Duration of follow-up was associated with superior outcomes, which was expected.

16.
Adv Healthc Mater ; : e2401875, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39219219

RESUMO

Developing nerve grafts with intact mesostructures, superior conductivity, minimal immunogenicity, and improved tissue integration is essential for the treatment and restoration of neurological dysfunctions. A key factor is promoting directed axon growth into the grafts. To achieve this, biohybrid nerves are developed using decellularized rat sciatic nerve modified by in situ polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). Nine biohybrid nerves are compared with varying polymerization conditions and cycles, selecting the best candidate through material characterization. These results show that a 1:1 ratio of FeCl3 oxidant to ethylenedioxythiophene (EDOT) monomer, cycled twice, provides superior conductivity (>0.2 mS cm-1), mechanical alignment, intact mesostructures, and high compatibility with cells and blood. To test the biohybrid nerve's effectiveness in promoting motor axon growth, human Spinal Cord Spheroids (hSCSs) derived from HUES 3 Hb9:GFP cells are used, with motor axons labeled with green fluorescent protein (GFP). Seeding hSCS onto one end of the conduit allows motor axon outgrowth into the biohybrid nerve. The construct effectively promotes directed motor axon growth, which improves significantly after seeding the grafts with Schwann cells. This study presents a promising approach for reconstructing axonal tracts in humans.

17.
Sci Prog ; 107(3): 368504241281469, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39314156

RESUMO

Peripheral nerve and large-scale muscle injuries result in significant disability, necessitating the development of biomaterials that can restore functional deficits by promoting tissue regrowth in an electroactive environment. Among these materials, graphene is favored for its high conductivity, but its low bioactivity requires enhancement through biomimetic components. In this study, we extrusion printed graphene-poly(lactide-co-glycolide) (graphene) lattice scaffolds, aiming to increase bioactivity by incorporating decellularized extracellular matrix (dECM) derived from mouse pup skeletal muscle. We first evaluated these scaffolds using human-induced pluripotent stem cell (hiPSC)-derived motor neurons co-cultured with supportive glia, observing significant improvements in axon outgrowth. Next, we tested the scaffolds with C2C12 mouse and human primary myoblasts, finding no significant differences in myotube formation between dECM-graphene and graphene scaffolds. Finally, using a more complex hiPSC-derived 3D motor neuron spheroid model co-cultured with human myoblasts, we demonstrated that dECM-graphene scaffolds significantly improved axonal expansion towards peripheral myoblasts and increased axonal network density compared to graphene-only scaffolds. Features of early neuromuscular junction formation were identified near neuromuscular interfaces in both scaffold types. These findings suggest that dECM-graphene scaffolds are promising candidates for enhancing neuromuscular regeneration, offering robust support for the growth and development of diverse neuromuscular tissues.


Assuntos
Técnicas de Cocultura , Matriz Extracelular , Grafite , Células-Tronco Pluripotentes Induzidas , Alicerces Teciduais , Grafite/química , Animais , Alicerces Teciduais/química , Camundongos , Humanos , Matriz Extracelular/química , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios Motores/fisiologia , Neurônios Motores/citologia , Axônios/fisiologia , Mioblastos/citologia , Engenharia Tecidual/métodos , Crescimento Neuronal/efeitos dos fármacos , Crescimento Neuronal/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/citologia , Diferenciação Celular , Junção Neuromuscular/fisiologia
18.
J Appl Physiol (1985) ; 137(3): 705-717, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39052773

RESUMO

Progressive functional decline is a key element of cancer-associated cachexia. Major barriers to translating preclinical therapies into the clinic include lack of cancer models that accurately mimic functional decline, which develops over time, and use of nonspecific measures, like grip strength, as surrogates for physical function. In this study, we aimed to extend the survival and longevity of a cancer model, to investigate cachexia-related function at the basic science level. Survival extension studies were performed by testing multiple cell lines, dilutions, and vehicle-types in orthotopic implantation of K-rasLSL.G12D/+; Trp53R172H/+; Pdx-1-Cre (KPC)-derived cells. One hundred twenty-eight animals in this new model were assessed for cachexia syndrome phenotype using a battery of anatomical, biochemical, and behavioral techniques. We extended the survival of the KPC orthotopic model to 8-9 wk postimplantation using a relatively low 100-cell dose of DT10022 KPC cells (P < 0.001). In this low-dose orthotopic (LO) model, progressive muscle wasting was detected in parallel to systemic inflammation; skeletal muscle atrophy at the fiber level was detected as early as 3 wk postimplantation compared with controls (P < 0.001). Gait speed in LO animals declined as early as 2 wk postimplantation, whereas grip strength change was a late event. Principal component and regression analyses revealed distinct cachectic and noncachectic animal populations, which we leveraged to show that the gait speed decline was specific to cachexia (P < 0.01), whereas grip strength decline was not (P = 0.19). Gait speed represents an accurate surrogate for cachexia-related physical function as opposed to grip strength.NEW & NOTEWORTHY Previous studies of cancer-induced cachexia have been confounded by the relatively rapid death of animal subjects. Using a lower dose of cancer cells in combination with a battery of behavioral, structural, histological, and biochemical techniques, we show that gait speed is actually the best indicator of functional decline due to cachexia. Future studies are required to define the underlying physiological basis of these findings.


Assuntos
Caquexia , Músculo Esquelético , Caquexia/fisiopatologia , Animais , Camundongos , Músculo Esquelético/fisiopatologia , Modelos Animais de Doenças , Masculino , Linhagem Celular Tumoral , Neoplasias/complicações , Neoplasias/fisiopatologia , Atrofia Muscular/fisiopatologia , Força da Mão/fisiologia , Feminino
19.
Science ; 383(6687): 1096-1103, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452063

RESUMO

Monitoring homeostasis is an essential aspect of obtaining pathophysiological insights for treating patients. Accurate, timely assessments of homeostatic dysregulation in deep tissues typically require expensive imaging techniques or invasive biopsies. We introduce a bioresorbable shape-adaptive materials structure that enables real-time monitoring of deep-tissue homeostasis using conventional ultrasound instruments. Collections of small bioresorbable metal disks distributed within thin, pH-responsive hydrogels, deployed by surgical implantation or syringe injection, allow ultrasound-based measurements of spatiotemporal changes in pH for early assessments of anastomotic leaks after gastrointestinal surgeries, and their bioresorption after a recovery period eliminates the need for surgical extraction. Demonstrations in small and large animal models illustrate capabilities in monitoring leakage from the small intestine, the stomach, and the pancreas.


Assuntos
Implantes Absorvíveis , Fístula Anastomótica , Trato Gastrointestinal , Ultrassom , Animais , Humanos , Homeostase , Estômago , Trato Gastrointestinal/cirurgia , Fístula Anastomótica/diagnóstico por imagem , Modelos Animais
20.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014165

RESUMO

Background: Progressive functional decline is a key element of cancer-associated cachexia. No therapies have successfully translated to the clinic due to an inability to measure and improve physical function in cachectic patients. Major barriers to translating pre-clinical therapies to the clinic include lack of cancer models that accurately mimic functional decline and use of non-specific outcome measures of function, like grip strength. New approaches are needed to investigate cachexia-related function at both the basic and clinical science levels. Methods: Survival extension studies were performed by testing multiple cell lines, dilutions, and vehicle-types in orthotopic implantation of K-ras LSL.G12D/+ ; Trp53 R172H/+ ; Pdx-1-Cre (KPC) derived cells. 128 animals in this new model were then assessed for muscle wasting, inflammation, and functional decline using a battery of biochemical, physiologic, and behavioral techniques. In parallel, we analyzed a 156-subject cohort of cancer patients with a range of cachexia severity, and who required rehabilitation, to determine the relationship between gait speed via six-minute walk test (6MWT), grip strength (hGS), and functional independence measures (FIM). Cachectic patients were identified using the Weight Loss Grading Scale (WLGS), Fearon consensus criteria, and the Prognostic Nutritional Index (PNI). Results: Using a 100-cell dose of DT10022 KPC cells, we extended the survival of the KPC orthotopic model to 8-9 weeks post-implantation compared to higher doses used (p<0.001). In this Low-dose Orthotopic (LO) model, both progressive skeletal and cardiac muscle wasting were detected in parallel to systemic inflammation; skeletal muscle atrophy at the fiber level was detected as early as 3 weeks post-implantation compared to controls (p<0.001). Gait speed in LO animals declined as early 2 week post-implantation whereas grip strength change was a late event and related to end of life. Principle component analysis (PCA) revealed distinct cachectic and non-cachectic animal populations, which we leveraged to show that gait speed decline was specific to cachexia (p<0.01) while grip strength decline was not (p=0.19). These data paralleled our observations in cancer patients with cachexia who required rehabilitation. In cachectic patients (identified by WLGS, Fearon criteria, or PNI, change in 6MWT correlated with motor FIM score changes while hGS did not (r 2 =0.18, p<0.001). This relationship between 6MWT and FIM in cachectic patients was further confirmed through multivariate regression (r 2 =0.30, p<0.001) controlling for age and cancer burden. Conclusion: Outcome measures linked to gait are better associated with cachexia related function and preferred for future pre-clinical and clinical cachexia studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA