Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 295(25): 8480-8491, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32317283

RESUMO

Most malaria deaths are caused by the protozoan parasite Plasmodium falciparum Its life cycle is regulated by a cGMP-dependent protein kinase (PfPKG), whose inhibition is a promising antimalaria strategy. Allosteric kinase inhibitors, such as cGMP analogs, offer enhanced selectivity relative to competitive kinase inhibitors. However, the mechanisms underlying allosteric PfPKG inhibition are incompletely understood. Here, we show that 8-NBD-cGMP is an effective PfPKG antagonist. Using comparative NMR analyses of a key regulatory domain, PfD, in its apo, cGMP-bound, and cGMP analog-bound states, we elucidated its inhibition mechanism of action. Using NMR chemical shift analyses, molecular dynamics simulations, and site-directed mutagenesis, we show that 8-NBD-cGMP inhibits PfPKG not simply by reverting a two-state active versus inactive equilibrium, but by sampling also a distinct inactive "mixed" intermediate. Surface plasmon resonance indicates that the ability to stabilize a mixed intermediate provides a means to effectively inhibit PfPKG, without losing affinity for the cGMP analog. Our proposed model may facilitate the rational design of PfPKG-selective inhibitors for improved management of malaria.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Regulação Alostérica , Sítios de Ligação , GMP Cíclico/análogos & derivados , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de GMP Cíclico/genética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Plasmodium falciparum/metabolismo , Domínios Proteicos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Ressonância de Plasmônio de Superfície
2.
PLoS Pathog ; 11(2): e1004639, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25646845

RESUMO

The Plasmodium falciparum cGMP-dependent protein kinase (PfPKG) is a key regulator across the malaria parasite life cycle. Little is known about PfPKG's activation mechanism. Here we report that the carboxyl cyclic nucleotide binding domain functions as a "gatekeeper" for activation by providing the highest cGMP affinity and selectivity. To understand the mechanism, we have solved its crystal structures with and without cGMP at 2.0 and 1.9 Å, respectively. These structures revealed a PfPKG-specific capping triad that forms upon cGMP binding, and disrupting the triad reduces kinase activity by 90%. Furthermore, mutating these residues in the parasite prevents blood stage merozoite egress, confirming the essential nature of the triad in the parasite. We propose a mechanism of activation where cGMP binding allosterically triggers the conformational change at the αC-helix, which bridges the regulatory and catalytic domains, causing the capping triad to form and stabilize the active conformation.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Estágios do Ciclo de Vida/fisiologia , Merozoítos/fisiologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Immunoblotting , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Conformação Proteica , Transfecção
3.
ACS Infect Dis ; 4(3): 415-423, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29251493

RESUMO

cGMP-dependent protein kinase from Plasmodium falciparum ( PfPKG) plays a crucial role in the sexual as well as the asexual proliferation of this human malaria causing parasite. However, function and regulation of PfPKG are largely unknown. Previous studies showed that the domain organization of PfPKG significantly differs from human PKG ( hPKG) and indicated a critical role of the cyclic nucleotide binding domain D (CNB-D). We identified a novel mechanism, where the CNB-D controls activation and regulation of the parasite specific protein kinase. Here, kinase activity is not dependent on a pseudosubstrate autoinhibitory sequence (IS), as reported for human PKG. A construct lacking the putative IS and containing only the CNB-D and the catalytic domain is inactive in the absence of cGMP and can efficiently be activated with cGMP. On the basis of structural evidence, we describe a regulatory mechanism, whereby cGMP binding to CNB-D induces a conformational change involving the αC-helix of the CNB-D. The inactive state is defined by a unique interaction between Asp597 of the catalytic domain and Arg528 of the αC-helix. The same arginine (R528), however, stabilizes cGMP binding by interacting with Tyr480 of the phosphate binding cassette (PBC). This represents the active state of PfPKG. Our results unveil fundamental differences in the activation mechanism between PfPKG and hPKG, building the basis for the development of strategies for targeted drug design in fighting malaria.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/química , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Regulação Enzimológica da Expressão Gênica , Plasmodium falciparum/enzimologia , Regulação Alostérica , GMP Cíclico/metabolismo , Ligação Proteica , Conformação Proteica
4.
ACS Chem Biol ; 12(9): 2388-2398, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28793191

RESUMO

Cyclic GMP analogs, 8-Br, 8-pCPT, and PET-cGMP, have been widely used for characterizing cellular functions of cGMP-dependent protein kinase (PKG) I and II isotypes. However, interpreting results obtained using these analogs has been difficult due to their low isotype specificity. Additionally, each isotype has two binding sites with different cGMP affinities and analog selectivities, making understanding the molecular basis for isotype specificity of these compounds even more challenging. To determine isotype specificity of cGMP analogs and their structural basis, we generated the full-length regulatory domains of PKG I and II isotypes with each binding site disabled, determined their affinities for these analogs, and obtained cocrystal structures of both isotypes bound with cGMP analogs. Our affinity and activation measurements show that PET-cGMP is most selective for PKG I, whereas 8-pCPT-cGMP is most selective for PKG II. Our structures of cyclic nucleotide binding (CNB) domains reveal that the B site of PKG I is more open and forms a unique π/π interaction through Arg285 at ß4 with the PET moiety, whereas the A site of PKG II has a larger ß5/ß6 pocket that can better accommodate the bulky 8-pCPT moiety. Our structural and functional results explain the selectivity of these analogs for each PKG isotype and provide a starting point for the rational design of isotype selective activators.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo II/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , GMP Cíclico/análogos & derivados , Tionucleotídeos/metabolismo , Cristalografia por Raios X , GMP Cíclico/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/química , Proteína Quinase Dependente de GMP Cíclico Tipo II/química , Humanos , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
5.
ACS Chem Biol ; 10(6): 1502-10, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25765284

RESUMO

A-Kinase Anchoring Proteins (AKAPs) coordinate complex signaling events by serving as spatiotemporal modulators of cAMP-dependent protein kinase activity in cells. Although AKAPs organize a plethora of diverse pathways, their cellular roles are often elusive due to the dynamic nature of these signaling complexes. AKAPs can interact with the type I or type II PKA holoenzymes by virtue of high-affinity interactions with the R-subunits. As a means to delineate AKAP-mediated PKA signaling in cells, we sought to develop isoform-selective disruptors of AKAP signaling. Here, we report the development of conformationally constrained peptides named RI-STapled Anchoring Disruptors (RI-STADs) that target the docking/dimerization domain of the type 1 regulatory subunit of PKA. These high-affinity peptides are isoform-selective for the RI isoforms, can outcompete binding by the classical AKAP disruptor Ht31, and can selectively displace RIα, but not RIIα, from binding the dual-specific AKAP149 complex. Importantly, these peptides are cell-permeable and disrupt Type I PKA-mediated phosphorylation events in the context of live cells. Hence, RI-STAD peptides are versatile cellular tools to selectively probe anchored type I PKA signaling events.


Assuntos
Proteínas de Ancoragem à Quinase A/antagonistas & inibidores , Proteína Quinase Tipo II Dependente de AMP Cíclico/antagonistas & inibidores , Proteína Quinase Tipo I Dependente de AMP Cíclico/antagonistas & inibidores , Peptídeos/química , Inibidores de Proteínas Quinases/química , Subunidades Proteicas/antagonistas & inibidores , Proteínas de Ancoragem à Quinase A/química , Proteínas de Ancoragem à Quinase A/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Proteína Quinase Tipo I Dependente de AMP Cíclico/química , Proteína Quinase Tipo I Dependente de AMP Cíclico/metabolismo , Proteína Quinase Tipo II Dependente de AMP Cíclico/química , Proteína Quinase Tipo II Dependente de AMP Cíclico/metabolismo , Humanos , Cinética , Dados de Sequência Molecular , Peptídeos/farmacologia , Fosforilação , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Inibidores de Proteínas Quinases/farmacologia , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
6.
ACS Chem Biol ; 9(3): 635-42, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24422448

RESUMO

A-kinase anchoring proteins (AKAPs) play an important role in the spatial and temporal regulation of protein kinase A (PKA) by scaffolding critical intracellular signaling complexes. Here we report the design of conformationally constrained peptides that disrupt interactions between PKA and AKAPs in an isoform-selective manner. Peptides derived from the A Kinase Binding (AKB) domain of several AKAPs were chemically modified to contain an all-hydrocarbon staple and target the docking/dimerization domain of PKA-R, thereby occluding AKAP interactions. The peptides are cell-permeable against diverse human cell lines, are highly isoform-selective for PKA-RII, and can effectively inhibit interactions between AKAPs and PKA-RII in intact cells. These peptides can be applied as useful reagents in cell-based studies to selectively disrupt AKAP-localized PKA-RII activity and block AKAP signaling complexes. In summary, the novel hydrocarbon-stapled peptides developed in this study represent a new class of AKAP disruptors to study compartmentalized RII-regulated PKA signaling in cells.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Peptídeos Penetradores de Células/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ancoragem à Quinase A/química , Sequência de Aminoácidos , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de AMP Cíclico/química , Polarização de Fluorescência , Humanos , Imunoprecipitação , Microscopia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Biblioteca de Peptídeos , Ligação Proteica , Isoformas de Proteínas , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA