Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 16(23): 11719-28, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24811056

RESUMO

Silver nanoparticles (AgNPs) functionalized with an organometallic bifunctional thiol containing Pt(ii) centers, generated in situ from trans-trans-[thioacetyl-bistributylphosphine-diethynylbiphenyl-diplatinum(ii)], were synthesized with different sulphur/metal molar ratios (i.e. AgNPs-1 and AgNPs-2) with the aim to obtain nanosystems of different mean size and self-organization behaviour. AgNPs spontaneously self-assemble, giving rise to 2D networks, as previously assessed. In this work a deeper insight into the chemico-physical properties of these AgNPs is proposed by means of synchrotron radiation induced X-ray photoelectron spectroscopy (SR-XPS) and X-ray absorption fine structure spectroscopy (XAFS) techniques. The results are discussed in order to probe the interaction at the interface between a noble metal and a thiol ligand at the atomic level and the aim of this study is to shed light on the chemical structure and self-organization details of nanosystems. The nature of the chemical interaction between the dithiol ligand and the Ag atoms on the nanoparticle surface was investigated by combining SR-XPS (S2p, Ag3d core levels) and XAS (S and Ag K-edges) analysis. UV-visible absorption and emission measurements were also carried out on all samples and compared with TD-DFT calculations so as to get a better understanding of their optical behavior and establish the nature of the excitation and emission processes.


Assuntos
Nanopartículas Metálicas/química , Compostos Organoplatínicos/química , Prata/química , Compostos de Sulfidrila/química , Estrutura Molecular , Espectroscopia Fotoeletrônica , Teoria Quântica , Síncrotrons , Espectroscopia por Absorção de Raios X
2.
Langmuir ; 27(11): 7084-90, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21563807

RESUMO

The radiowave dielectric properties of organothiol monolayer-protected Au and Ag metallic nanoparticles have been investigated in the frequency range of 10 kHz to 2 GHz, where a dielectric relaxation, due to the polarization of the ionic atmosphere at the aqueous interface, occurs. The simultaneous measurement of the particle size, by means of dynamic light scattering technique, and of the particle electrical charge, by means of laser microelectrophoresis technique, allow us to describe the whole dielectric behavior at the light of the standard electrokinetic model for charged colloidal particles. Au and Ag metallic nanoparticles experience a large charge renormalization, in agreement with the counterion condensation effect for charged spherical colloidal particles. The value of the effective valence Z(eff) of each nanoparticle investigated has been evaluated thanks to the dielectric parameters of the observed relaxation process and further confirmed by direct current electrical conductivity measurements. All in all, these results provide support for the characterization of the electrical interfacial properties of metallic nanoparticles by means of dielectric relaxation measurements.


Assuntos
Nanopartículas Metálicas/química , Compostos de Sulfidrila/química , Água/química , Impedância Elétrica , Soluções
3.
Sci Rep ; 10(1): 11544, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665664

RESUMO

Phase-transition materials provide exciting opportunities for controlling optical properties of photonic devices dynamically. Here, we systematically investigate the infrared emission from a thin film of vanadium dioxide (VO2). We experimentally demonstrate that such thin films are promising candidates to tune and control the thermal radiation of an underlying hot body with different emissivity features. In particular, we studied two different heat sources with completely different emissivity features, i.e. a black body-like and a mirror-like heated body. The infrared emission characteristics were investigated in the 3.5-5.1 µm spectral range using the infrared thermography technique which included heating the sample, and then cooling back. Experimental results were theoretically analyzed by modelling the VO2 film as a metamaterial for a temperature range close to its critical temperature. Our systematic study reveals that VO2 thin films with just one layer 80 nm thick has the potential to develop completely different dynamic tuning of infrared radiation, enabling both black-body emission suppression and as well as mirror emissivity boosting, in the same single layer device. Understanding the dynamics and effects of thermal tuning on infrared emission will benefit wide range of infrared technologies including thermal emitters, sensors, active IR filters and detectors.

4.
J Phys Chem Lett ; 9(17): 5002-5008, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30107131

RESUMO

In this work, we show how to control the morphology of femtosecond laser melted gold nanosphere aggregates. A careful choice of both laser fluence and wavelength makes it possible to selectively excite different aggregate substructures to produce larger spherical nanoparticles, nanorods, and nanoprisms or necklace-like 1D nanostructures in which the nanoparticles are interlinked by bridges. Finite integral technique calculations have been performed on the near-field concentration of light in the nanostructures which confirm the wavelength dependence of the light concentration and suggest that the resulting localized high intensities lead to nonthermal melting. We show that by tuning the wavelength of the melting light it is possible to choose the spatial extension of the ensembles of NPs heated thus allowing us to exhibit control over the morphology of the nanostructures formed by the melting process. By a proper combination of this method with self-assembly of chemically synthesized nanoparticles, one can envisage the development of an innovative high-throughput high-resolution nanofabrication technique.

5.
Colloids Surf B Biointerfaces ; 142: 408-416, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26977977

RESUMO

The synthesis, characterization and assessment of biological behavior of innovative negatively charged functionalized gold nanoparticles is herein reported, for potential applications in the field of radiotherapy and drug delivery. Gold nanoparticles (AuNPs) functionalized with two capping agents, i.e., the 3-mercapto-1-propansulfonate (3-MPS) and 1-ß-thio-D-glucose (TG), have been on purpose synthesized and fully characterized. Advanced characterization techniques including X-Ray Photoelectron Spectroscopy (XPS) were applied to probe the chemical structure of the synthesized nanomaterials. Z-potential and Dynamic Light Scattering measurements allowed assessing the nanodimension, dispersity, surface charge and stability of AuNPs. Transmission Electron Microscopy (TEM) and Flame Atomic Absorption Spectroscopy (FAAS) were applied to the "in vitro" HSG cell model, to investigate the nanoparticles-cells interaction and to evaluate the internalization efficiency, whereas short term cytotoxicity and long term cell killing were evaluated by means of MTT and SRB assays, respectively. In conclusion, in order to increase the amount of gold atoms inside the cell we have optimized the synthesis for a new kind of biocompatible and very stable negatively charged TG-functionalized nanoparticles, with diameters in a range that maximize the uptake in cells (i.e., ∼15nm). Such particles are very promising for radiotherapy and drug delivery application.


Assuntos
Portadores de Fármacos , Glucose/análogos & derivados , Ouro/química , Nanopartículas Metálicas/química , Compostos de Sulfidrila/química , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , Glucose/química , Ouro/farmacologia , Células HeLa , Humanos , Tamanho da Partícula , Rodaminas , Eletricidade Estática , Propriedades de Superfície
6.
Colloids Surf B Biointerfaces ; 134: 314-21, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26209964

RESUMO

Core-shell gold nanoparticles [AuNPs], stabilized with a hydrophilic polymer, poly(3-dimethylammonium-1-propyne hydrochloride) [PDMPAHCl], have been used for the immobilization of bovine serum amine oxidase [BSAO]. The functionalized surface of the hybrid nanoparticles is pH responsive, due to the presence of aminic groups that carry out a double role: on one hand they act as ligands for the gold nanoparticle surface, allowing the colloidal stabilization and, on the other hand, they give a hydrophilic characteristic to the whole colloidal suspension. The core-shell nanoparticles [Au@PDMPAHCl] have been characterized by using UV-vis and X-ray photoelectron spectroscopy, DLS, ζ-potential measurements and by FE-TEM microscopy. BSAO enzyme can be loaded by non-covalent immobilization onto Au@PDMPAHCl nanoparticles up to 70% in weight, depending on the pH values of the environmental medium. Activity tests on Au@PDMPAHCl-BSAO bioconjugates confirm an enzymatic activity up to 40%, with respect to the free enzyme activity. Moreover, our results show that loading and enzymatic activity are rather interrelated characteristics and that, under appropriate polymer concentration and pH conditions, a satisfactory compromise can be reached. These results, as a whole, indicate that Au@PDMPAHCl-BSAO bioconjugate systems are promising for future biomedical applications.


Assuntos
Amina Oxidase (contendo Cobre)/sangue , Ouro/química , Nanopartículas/química , Polímeros/química , Animais , Bovinos , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Espectrofotometria Ultravioleta
7.
J Mater Chem B ; 2(27): 4204-4220, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32261559

RESUMO

This article reviews the most recent literature data on the applications of gold nanoparticles and their various conjugates which make them suitable structures towards biomedical and clinical purposes, with an emphasis on their use as drug delivery vehicles for selective targeting of cancer cells. With the rapid surge in the development of nanomaterials, new methodologies and treatment strategies have been explored and these topics should be taken into consideration when a current scenario is required in the design of new experimental approaches or in a comprehensive data interpretation. We present here a summary of the main properties of gold nanoparticles and their conjugates and the state-of-the-art of non-conventional treatment in targeted drug delivery based on gold nanoparticles as carriers, with the aim to give the reader an overview of the most significant advances in this field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA